Training a neural network to select dispatching rules in real time

Wiem Mouelhi-Chibani, Henri Pierreval

2019. 07. 31
Jeong Hoon Shin
Contents

1. Introduction
2. Selecting efficient dispatching rules: related research
3. Problem formulation
4. Proposed method
5. Example: application to a simplified flow-shop
6. Conclusion
1. Introduction
Introduction

- Dispatching Rule (DR)
 - Definition: rules used to select the next job to process from jobs awaiting service.
 - there is no DR that is globally better than all the others.
 - efficiency depends on the characteristics of the system (the operating condition parameters and the production objectives)

- changing dynamically the DR (when, and which DR)
 - can yield better results.
 - Artificial intelligence (AI) can be very useful.

- This study suggests a new approach
 - learns without any training set
 - unsupervised learning
2. Selecting efficient dispatching rules: related research
Related research

- Boukachour, 1992
 - Performance of DRs greatly depends on the configuration of the studied system, the operating conditions and the performance criterion used to evaluate the DRs

- Finding best rule in steady state simulations
 - Single-pass period method: single long period of time to study the DR performance
 - Statistical methods or learning methods (clustering, segmentation, machine learning)

- For dynamic and real scheduling.
 - Multi-pass period method: Decompose simulation time into small periods
 - Few papers use learning methods
 - the results can be very sensitive to the period length.
 - a succession of good local strategies does not necessarily yield a good global performance.
Related research & approach of this study

- Directly consider the dynamic changes of the system state to select DRs.
 - do not decompose time into periods for DR selection.
 - Consider triggering events, expert system (simulation optimization)

- In learning method
 - A training set from real time environment is quite difficult to build.

- The approach in this study
 - dynamic (no decomposition of time in periods): according to the system state.
 - allows knowledge about how to decide in real time
 - determining which dispatching rule (DR) to select when a triggering event occurs.
 - using Neural Network (NN)
3. Problem formulation
Notations & Problem

Notations

- set M of m machines: $M = \{m_1, m_2, \ldots, m_m\}$.
- set of r candidate dispatching rules that can be used for scheduling machine m_j: $DR_j = \{DR_{j1}, DR_{j2}, \ldots, DR_{jr}\}$.
- vector of system parameters: $D = \{D_1, D_2, \ldots, D_l\}$.
- vector of state variables: $S(t) = \{S_1(t), S_2(t), \ldots, S_k(t)\}$. (# of jobs in Queue, # of idle resources in given WorkCenter)

Objective: to select, at given instants t (triggering event time), the most suitable dispatching rule DR_{jr}, to determine the next job to process on a given machine m_j, so that the expectation of the performance $E(f(\Sigma))$, computed on the study period, is optimized.

Problem

- to determine for the period of time for which the system is studied the right sequence of dispatching rules Σ to optimize the expectation of the performance function $E(f(\Sigma))$.

4. Proposed method
NN configuration & simulation module

- **Neural Network**
 - Output: # of node = # of decision points (select DR) in system.
 - Learning = determining the values of $W = \{w_1, w_2, ..., w_i\}$.

- **Simulation module**
 - Decision module: learned NN
 - Physical module: construct using simulation tool

Fig. 2. Neural network for selecting dispatching rules

Fig. 3. Simulation module of the workshop
Training NN using Local search

- **Solution**: $W = \{w_1, w_2, ..., w_i\}$. (initial solution : W_0 random choose)
- **Objective**: optimize $E(f(W))$.
- **Complexity**: relies on # of weights (i in $W = \{w_1, w_2, ..., w_i\}$)

Summary of the training methodology

Step 1: Define the performance criteria for the dynamic scheduling. Identify the system variables that may influence the decisions (D and S). Identify the set of DR that can be relevant on each machine.

Step 2: Build a simulation model of the manufacturing system. Build a neural network. Connect the simulation and the NN so that the system state and parameters and the DR chosen can be communicated.

Step 3: Select a simulation optimization approach. Use the NN weights (adjusted parameters) as decision variables for the optimization. Use the simulation to measure the objective function.

Step 4: Run simulation optimization. Collect the resulting NN configuration.
5. Example: application to a simplified flow-shop
Each machine is periodically out of service for changing tools.

Process times of each WC ~ Exp Distribution

Due date: assigned at the time of arrival at the shop. \(D_i = A_i + \alpha \sum p_{ij} \) \((1) \)

Shop load (\%) = \(\beta (t_1 + t_2)/4 \) \((2) \)

Used rules: FAS, FIQ, EDD, SPT, and LPT

In Barrett and Barman (1986), best results: combinations of SPT and EDD (SPT–SPT, SPT–EDD, EDD–EDD)
Model, NN

- Simulation model (using arena)
 - Run length: 15,000h (4yr WT)
 - Shop empty at the beginning
 - Warm up period: 7000h
 - Simulation replicated & averaged

- NN (VC++)
 - System state variables S_{19} to S_{22} have been empirically determined after preliminary simulation runs.
 - Candidate DRs (output layer)
 - $DR_1 = \{FIQ, EDD, SPT, LPT\}$
 - $DR_2 = \{FIQ, FIS, EDD, SPT, LPT\}$
 - 168 weights: $22(\text{state var}) \times 7(\text{hidden}) + 7 \times 2(\text{output})$

$$\text{sigmoid}(x) = \frac{1}{1 + \exp(-x)} \quad (3)$$

Table 1: System parameters.

<table>
<thead>
<tr>
<th>D_1</th>
<th>Shop load: 91%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_2</td>
<td>Processing times variation (addition of a deviation normally distributed $N(0, 0.3)$)</td>
</tr>
<tr>
<td>D_3</td>
<td>Minimum job process time: 0.1 units of time</td>
</tr>
<tr>
<td>D_4</td>
<td>Allowance factor α fixed at 3</td>
</tr>
</tbody>
</table>

Table 2: System state variables.

S_1, S_{11}	Number of jobs, respectively, in the first and the second queue
S_2, S_3, S_4	Minimum, maximum and average process time on WC1 of the jobs waiting in the first queue
S_5, S_6, S_7	Minimum, maximum and average process time on WC2 of the jobs waiting in the first queue
S_8, S_9, S_{10}	Minimum, maximum and average process time on WC2 of jobs waiting in the second queue
S_{12}, S_{13}	Minimum, maximum and average slack time of jobs waiting in the first queue
S_{14}	Minimum, maximum and average slack time of jobs waiting in the second queue
S_{15}, S_{16}	Number of the concerned waiting queue
S_{17}	Percentage of jobs in the concerned waiting queue with a process time less than 1.5 units of time
S_{20}	Percentage of jobs in the concerned waiting queue with a process time between 1.5 and 3 units of time
S_{21}	Percentage of jobs in the concerned waiting queue with a process time between 3 and 4.5 units of time
S_{22}	Percentage of jobs in the concerned waiting queue with a process time greater than 4.5 units of time
NN Opt & Exp

- NN optimize (using SA).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial temperature</td>
<td>7000</td>
</tr>
<tr>
<td>Cooling ratio</td>
<td>0.8</td>
</tr>
<tr>
<td>σ_{max}</td>
<td>20</td>
</tr>
<tr>
<td>σ_{min}</td>
<td>5</td>
</tr>
<tr>
<td>The total number of weights</td>
<td>168</td>
</tr>
<tr>
<td>p_{max}</td>
<td>20</td>
</tr>
<tr>
<td>Stopping threshold, ε</td>
<td>0.001</td>
</tr>
</tbody>
</table>

The perturbation of solutions (in SA)

\[g(l) = E[1 + ((a - 1) \times e^{-l^2/T_0 \times 10})] \] \hspace{1cm} (4)

\[s(T_l) = \left[\frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{(T_0 - \varepsilon)} \right] \times (T_l - T_0) + \sigma_{\text{max}} \] \hspace{1cm} (5)

- Experiment & results.
 - 10 replications for each simulation run (cpu time)
 - 50 replications to compare Barrett and Barman (1986)
 - simulation period of 4yrs (55h on a PC)
 - SPT-EDD & SPT-SPT yield good results
 - NN with opt weights compete SPT-SPT

<table>
<thead>
<tr>
<th>DR selected</th>
<th>Mean tardiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDD--EDD</td>
<td>11.99342</td>
</tr>
<tr>
<td>EDD--SPT</td>
<td>7.27360</td>
</tr>
<tr>
<td>SPT--EDD</td>
<td>6.67160</td>
</tr>
<tr>
<td>SPT--FIFO</td>
<td>9.33060</td>
</tr>
<tr>
<td>SPT--SPT</td>
<td>3.69815</td>
</tr>
<tr>
<td>EDD--FIFO</td>
<td>14.00025</td>
</tr>
<tr>
<td>Initial NN</td>
<td>25.43</td>
</tr>
<tr>
<td>Final NN</td>
<td>3.44712</td>
</tr>
</tbody>
</table>
6. Conclusion
Conclusion & Further research

- Proposed a new approach
 - To solve dynamic scheduling in real time DR selection environment.
 - depending on the workshop characteristics and the system state

- Implemented
 - Simulation : for the problem of Barrett and Barman (1986)
 - NN : determine weights using local search(SA)

- results
 - The result of NN with optimized weight compete the best result of Fixed rule(SPT-SPT).

- Further research.
 - use a distributed simulation optimization approach. (reduce cpu time)
 - Search : better method. good initial weights.
 - more complex problems
감사합니다