A modeling technique for loading and scheduling problems in FMS

Mansour Abou Gamila, Saeid Motavalli.

Pae, Oh

February 20, 2017
Contents

1. Introduction
2. Literature survey
3. Issues in FMS
4. Proposed model
5. Illustrative examples and analysis of results
6. Conclusions
1. Introduction

❖ Background

➢ FMS
 ✓ An FMS can be defined as a computer-controlled configuration of
 • semi-dependent workstations
 • material-handling systems designed

➢ Goal of FMS
 ✓ Flexibility of low volume production
 ✓ Efficiency of high volume mass production

➢ Operational policies in FMS:
 ✓ Tool movement policy
 ✓ Part movement policy

❖ Preview

➢ A modeling technique for loading and scheduling problems in FMS
➢ Objective with minimizing
 ✓ maximum completion time, material handling time, total processing time
2. Literature Survey

Literatures – Loading & Scheduling problem

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarin and Chen</td>
<td>1987</td>
<td>Machine loading and tool allocation problem of an FMS</td>
</tr>
<tr>
<td>Amorko-gyamph et al.</td>
<td>1992</td>
<td>Compared four tool allocation and scheduling procedures for a FMS</td>
</tr>
</tbody>
</table>
3. Issues in FMS

❖ Decisions in FMS

➢ Loading in FMS
 ✓ Assignment of operations and tools to each machine

➢ Routing decisions in FMS
 ✓ Decisions of the route and sequence of each part

➢ Scheduling problems in FMS
 ✓ Decisions of sequence on each machine

➢ System utilization
 ✓ \((\text{Working time}) / (\text{total time})\)

➢ Setup time
 ✓ Minimizing the setup times

➢ Tool management in FMS
4. Proposed model

Problem description

- **Problem**
 - Loading and scheduling problems in FMS

- **Objective**
 - Minimizing the sum of
 - maximum completion time
 - material handling time
 - total processing time

- **Decision variables**
 - Tool allocation, operation allocation and operation schedule

- **Constraints**
 - Tool magazine capacity, Tool life and Setup cost

- **Assumptions**
 - The machines are not identical
 - The distance between machines are equal
 - No breakdowns for machines or material handing systems
 - There is limited number of each tool type
 - All tools are new at the initial stage
 - Each tool and each operation are assigned only to one machine
 - The setup costs differ according to the size and shape of the parts
4. Proposed model

Notations

>- **Indices**
 - I Machine $I = 1, 2, \ldots, m$
 - J Part $J = 1, 2, \ldots, n$
 - $R(J)$ Operation $R(J) = 1, 2, \ldots, q(J)$
 - L Tool $L = 1, 2, \ldots, w$
 - A Machine stage $A = 1, 2, \ldots, z$
 - S Maximum completion time
 - T_L Tool life for type L tool
 - $P_{R(J), J, L, I}$ Processing time for operation $R(J)$ of part J using tool L on machine I
 - $C_{R(J), J, L, I}$ Cost of operation $R(J)$ of part J using tool L on machine I
 - C Total target cost for the processing
 - X_J Number of movements of part J between machines
 - C_J Setup cost for part J
 - D_J Due date of part J
 - C_{SETUP} Limit on setup cost
 - S_I Tool magazine capacity of machine I

>- **Decision variables**
 - $X_{L,I}$ = 1 if tool L is assigned to machine I; 0 otherwise
 - $Y_{R(J), J, L, I, A}$ = 1 if operation $R(J)$ of part J is assigned to machine I containing tool L in stage A; 0 otherwise
4. Proposed model

- Integrated planning model (Loading problem)

 - Objective function

 \[
 \text{Min } T = S + \sum_{j=1}^{n} X_j + \sum_{A=1}^{m} \sum_{I=1}^{n} \sum_{L=1}^{w} \sum_{R(j)=1}^{q(j)} P_{R(j),J,L,I} \cdot Y_{R(j),J,L,I,A}.
 \]

 - Constraints

 \[
 \begin{align*}
 \sum_{A=1}^{m} \sum_{I=1}^{n} \sum_{L=1}^{w} Y_{R(j),L,I,A} &= 1, & \forall R(j), I. & \text{Tool assignment and available machine} \\
 \sum_{A=1}^{m} \sum_{I=1}^{n} \sum_{L=1}^{w} \sum_{R(j)=1}^{q(j)} P_{R(j),J,L,I} \cdot Y_{R(j),J,L,I,A} & \leq TL, & \forall L. & \text{Tool life} \\
 \sum_{A=1}^{m} \sum_{I=1}^{n} \sum_{L=1}^{w} \sum_{R(j)=1}^{q(j)} P_{R(j),J,L,I} \cdot Y_{R(j),J,L,I,A} & \leq S, & \forall I. & \text{Processing time} \\
 \sum_{A=1}^{m} \sum_{I=1}^{n} \sum_{L=1}^{w} \sum_{R(j)=1}^{q(j)} P_{R(j),J,L,I} \cdot Y_{R(j),J,L,I,A} & \leq DJ, & \forall J. & \text{Due date} \\
 A(Y_{R(j)} + 1, J, L, I, A) - Y_{R(j),J,L,I,A} & \geq 0, & \forall R(j), J, L, I. & \text{Precedence relationship} \\
 \sum_{A=1}^{m} \sum_{I=1}^{n} \sum_{L=1}^{w} \sum_{R(j)=1}^{q(j)} Y_{R(j),J,L,I,A} & \leq 1, & \forall A, J. & \text{Operation assignment} \\
 \sum_{L=1}^{w} X_{L,J} & \leq 1, & \forall I. & \text{Tool assignment} \\
 \sum_{L=1}^{w} X_{L,J} & \leq S_I, & \forall I. & \text{Tool magazine capacity} \\
 \sum_{A=1}^{m} \sum_{I=1}^{n} \sum_{L=1}^{w} \sum_{R(j)=1}^{q(j)} C_{R(j),J,L,I} \cdot Y_{R(j),J,L,I,A} & \leq C, & \forall R(j), I. & \text{Target cost} \\
 X_{J} = \sum_{I=1}^{m} \left| Y_{R(j),J,L,I,A} - Y_{R(j)+1, J, L, I, A} \right| / 2, & \forall R(j), J, L, A & \text{Part movements} \\
 \sum_{j=1}^{n} X_j \cdot C_j C_{\text{SETUP}}. & \forall R(j), J, L, A & \text{Setup cost}
 \end{align*}
 \]

2017-02-20
Production & Logistics Information Lab.
4. Proposed model

❖ Heuristic method for detailed parts scheduling

➢ Scheduling the operations on machines to minimize the completion time
 (Dispatching with minimum start time → FIFO)

✓ Step 0: Obtain the results of assignment of operations and tool from the IP model.

✓ Step 1: Start with the first operation on each part, and with first stage for each machine.
 \(R(J) = 1, A = 1. \)

✓ Step 2: \(EF_R(J) = ES_R(J)_{M,A} + P_R(J)_{M} \) (the completion time of operation \(R(J) \)).
 Increase \(R(J) \) and \(A \) by one. \(R(J) = R(J) + 1, A = A + 1. \)

✓ Step 3: Check the machine availability for the operation \(R(J) \);
 The start time of operation \(R(J) \) as: \(ES_{R(J)}_{M,A} = \max (EF_{R(J)−1}, EF_{M,K−1}) \)

✓ Step 4: Check if all operations are scheduled; calculate the completion time and stop, otherwise, go to step 2.
5. Illustrates examples and analysis of results

- **Example 1**
 - 4 parts with 4 operation
 - 4 machines with 40 tool slots/20 types of tool

Assignment of tools and operations to machines and the utilization of machines

<table>
<thead>
<tr>
<th>Machines</th>
<th>Operations assigned</th>
<th>Tools assigned</th>
<th>Processing time</th>
<th>Completion time</th>
<th>Processing cost</th>
<th>Setup cost</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>11, 12, 22, 14</td>
<td>1, 7, 10, 16</td>
<td>281</td>
<td>374</td>
<td>1130</td>
<td>160</td>
<td>0.70</td>
</tr>
<tr>
<td>M2</td>
<td>21, 42, 33, 34, 44</td>
<td>3, 5, 14, 19, 20</td>
<td>346</td>
<td>384</td>
<td>1140</td>
<td>360</td>
<td>0.86</td>
</tr>
<tr>
<td>M3</td>
<td>41, 13, 23, 24</td>
<td>2, 6, 12, 17</td>
<td>280</td>
<td>403</td>
<td>1380</td>
<td>160</td>
<td>0.69</td>
</tr>
<tr>
<td>M4</td>
<td>31, 32, 43</td>
<td>13, 15, 18</td>
<td>294</td>
<td>294</td>
<td>890</td>
<td>110</td>
<td>0.73</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>1201</td>
<td>1612</td>
<td>4540</td>
<td>790</td>
<td>0.75</td>
</tr>
</tbody>
</table>

![Figure 1. Scheduling of parts on machines for example 1.](image-url)
5. Illustrates examples and analysis of results

Example 1

Comparison

<table>
<thead>
<tr>
<th></th>
<th>Set up cost</th>
<th>Processing cost</th>
<th>Total time</th>
<th>Max. completion time</th>
<th>Completion cost</th>
<th>Total cost</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarin and Chen</td>
<td>1050</td>
<td>3590</td>
<td>1369</td>
<td>558</td>
<td>5853</td>
<td>6903</td>
<td>61</td>
</tr>
<tr>
<td>Our model</td>
<td>790</td>
<td>4540</td>
<td>1201</td>
<td>403</td>
<td>6094</td>
<td>6884</td>
<td>74.5</td>
</tr>
</tbody>
</table>

Result

✓ Decreasing the total processing time from **1369 to 1201 min**, a decrease of **12.3%**.
✓ Decreasing the maximum completion time from **558 to 403 min**, a decrease of **27.8%**.
✓ Decreasing the set up cost from **$1050 to $790**, a decrease of **24.8%**.
✓ Increasing the utilization from **61% to 74.5%**.
✓ Although the processing cost for the model is higher, the total cost decreased from **$6903 to $6884** as a result of decreasing the maximum completion time, which Increases the production rate and reduces the idle time.
5. Illustrates examples and analysis of results

Example 2

- 5 parts with 5 operation
- 5 machines with 60 tool slots/22 types of tool

<table>
<thead>
<tr>
<th>Machines</th>
<th>Operations assigned</th>
<th>Tools assigned</th>
<th>Processing time</th>
<th>Completion time</th>
<th>Processing cost</th>
<th>Set up cost</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>11, 22, 52, 25</td>
<td>1, 7, 16</td>
<td>314</td>
<td>433</td>
<td>1150</td>
<td>250</td>
<td>0.709</td>
</tr>
<tr>
<td>M2</td>
<td>41, 21, 33, 14, 15</td>
<td>3, 11, 14, 19</td>
<td>324</td>
<td>420</td>
<td>1090</td>
<td>290</td>
<td>0.731</td>
</tr>
<tr>
<td>M3</td>
<td>31, 32, 23, 24, 34, 35</td>
<td>2, 4, 5, 12, 17</td>
<td>413</td>
<td>443</td>
<td>1590</td>
<td>250</td>
<td>0.932</td>
</tr>
<tr>
<td>M4</td>
<td>42, 43, 53, 54, 55</td>
<td>8, 13, 18</td>
<td>356</td>
<td>440</td>
<td>610</td>
<td>180</td>
<td>0.804</td>
</tr>
<tr>
<td>M5</td>
<td>51, 12, 13, 44, 45</td>
<td>5, 15, 20, 21, 22</td>
<td>389</td>
<td>413</td>
<td>640</td>
<td>240</td>
<td>0.878</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>1796</td>
<td>2215</td>
<td>5080</td>
<td>1210</td>
<td>0.811</td>
</tr>
</tbody>
</table>

Fig. 2. Scheduling of parts for example 2.
5. Illustrates examples and analysis of results

Example 2

Result

- The total processing time is 1796 min.
- The target cost is $5200, the actual processing cost is $5080.
- The set up time is 1300 min, the actual set up time is 1210 min.
- The machine utilization is 81.1%.
6. Conclusions

❖ Summary

➢ Problem

✓ Loading and scheduling problems in FMS system
✓ Integrated planning model
 • Solving with IP
✓ Heuristic method
 • Solving with simulation

❖ Adv. & Disadv.
THANK YOU