Selective disassembly planning for the end-of-life product

Procedia CIRP (2017)

Aug. 8, 2017

Presented by Hyung Won Kim
Contents

1. Introduction
2. UTD problem
3. Disassembly sequence planning
4. Case study
5. Conclusions

Production and Logistics Information Laboratory
1. Introduction
Disassembly

- An essential operation in product recycling
 - To collect reusable components or valuable materials

- Disassembly process
 - Complete disassembly (recycling)
 - Incomplete disassembly (maintenance and remanufacturing)
 - Selective disassembly: disassembly of selected components in a product

- Destructive disassembly vs Non-destructive disassembly
Introduction

- **Problem definition**
 - Selective disassembly sequencing problem

- **Objectives**
 - Minimize total disassembly time

- **Decision variables**
 - Disassembly sequence

- **Constraints**
 - Precedence relationships

- **Proposed method**
 - Destructive disassembly method
2. UTD problem
UTD problem

- UTD (unable to disassembly) problems in the non-destructive disassembly
 - Constraint directed graph
 - Node: component
 - Arc: precedence

```
Target component
```
```
Ideal shortest disassembly sequence
\[ \rightarrow 8-6-5-1 \]
```
```
Longer disassembly path
\[ \rightarrow 2-7-3-5-1 \]
```

```
C4 and C6: riveting connection
```

```
Introduction
```
```
Introduction
```
```
Introduction
```
```
Introduction
```
UTD problem

- **UDT (unable to disassembly) problems in the non-destructive disassembly**
 - Destructive disassembly method
 1) **Draw** the graph to show connections of the product from design;
 2) **Represent** the product with the multi-level constraint matrix and fastener-component matrix;
 3) **Generate** feasible disassembly sequences considering both operations;
 4) **Evaluate** solutions for non-destructive and destructive methods using established criteria;
 5) **Select** the optimal disassembly sequence.
3. Disassembly sequence planning
Disassembly sequence planning

- **Product presentation and component constrains**
 - **Constraints of product disassembly**
 - Fastener constrain (F)
 - ✓ Commonly used in products (non-destructive)
 - ✓ Ex) bolts and screws
 - Destructive constrain (D)
 - ✓ Only be removed in a destructive way
 - ✓ Ex) gluing, welding and riveting etc.

<table>
<thead>
<tr>
<th>Disassembly type</th>
<th>Constraint(F)</th>
<th>Constraint(B)</th>
<th>Constraint(M)</th>
<th>Constraint(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-destructive</td>
<td>Tool</td>
<td>Screwdriver Wrench</td>
<td>Pliers</td>
<td>Hands</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>8-18s</td>
<td>12-25s</td>
<td>3-10s</td>
</tr>
<tr>
<td>Destructive</td>
<td>Tool</td>
<td>Electrical drill</td>
<td>Hammer Saws</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Disassembly sequence planning

- **Product presentation and component constraints**
 - Multi-level constraint matrices
 - Tree structure: based on the BOM
 - Between one component and other components along ±X, ±Y, ±Z directions in Cartesian Coordinates of a product model
 - Assembly: $A= \{A_1, A_2, \ldots, A_n\}$ with n components

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00000</td>
<td>00100</td>
<td>101100</td>
<td>000100</td>
<td>100000</td>
</tr>
<tr>
<td>2</td>
<td>000100</td>
<td>000000</td>
<td>000100</td>
<td>000101</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>011100</td>
<td>001000</td>
<td>000000</td>
<td>000100</td>
<td>101111</td>
</tr>
<tr>
<td>4</td>
<td>001000</td>
<td>001000</td>
<td>001000</td>
<td>000000</td>
<td>001010</td>
</tr>
<tr>
<td>5</td>
<td>010000</td>
<td>001010</td>
<td>011111</td>
<td>000101</td>
<td>000000</td>
</tr>
</tbody>
</table>

- Fastener-component matrix
 - To represent constraints to components from fasteners
Disassembly sequence planning

- **DSP process**
 1. Determine a target component;
 2. Search for the lowest subassembly which contains the target component;
 3. Generate all feasible disassembly sequences using the multi-level constraint matrices and fastener-component matrix;
 4. Compare feasible sequences using predefined criteria, such as the disassembly time;
 5. Select the optimal disassembly sequence.
4. Case study
Case study

- **Simplified mechanical arm**
 - 12 components (1-12), 11 fasteners (23-33), target component 8
Case study

- **Simplified mechanical arm**
 - Graph representation of fasteners in the mechanical arm

![Graph representation of fasteners in the mechanical arm](image)

Destructive disassembly
Case study

- **Simplified mechanical arm**
 - Constraint matrices of the product and two first-level subassemblies

![Constraint matrices](image)

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
<th>F10</th>
<th>F11</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C4</td>
<td>0</td>
</tr>
<tr>
<td>C5</td>
<td>0</td>
</tr>
<tr>
<td>C6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>C7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>C8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>C9</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C12</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Case study

- **Simplified mechanical arm**
 - Subassembly 2 contains the target component 8.
 - Parts (6, 7, 8, 9, 10, 11, 12)
 - Ex) sequence 6-7-11-8-9-10-12 → 6-7-11-8
 - Optimal disassembly sequence: FS2 - 21 - 22 - 7 - 8
 - Optimal disassembly time: \(18 + 2(20) + 20 + 15 + 8 = 81\) s

\[? + 25 + 25 + 15 + 8 \]
5. Conclusions
Conclusions

- Overview
 - Selective disassembly sequence planning
 - Multi-level matrices and fastener-component matrix
 - Destructive method
 - Case study
Thank You!

Production and Logistics Information Laboratory