A new silver-meal based heuristic for the single-item dynamic lot-sizing problem with returns and remanufacturing

Schulz, T.
IJPR 2011 Vol. 49 No. 19

Doh, Hyoung Ho 2017. 7. 25
1. Introduction
2. Problem Description
3. Adapted Silver-Meal Heuristic
4. Computational experiment
5. Improvement
6. Computational experiment
7. Conclusions
1. Introduction

Dynamic lot singing model with returns and remanufacturing

(1) Single products
(2) No capacity restriction
(3) When and how to re/manufacture product for each period \(t \)
(4) 2 kinds of setup occur
2. Problem Description

- **Objective function**
 Minimize the total cost (setup costs and inventory holding costs)

- **Decision variables**
 1. When and how mulch to re/manufacture product for each period t
 2. Inventory level at the end of period

- **Assumptions**
 1. No initial inventory
 2. Backlogging is not allowed
 3. All parameters are to be nonnegative
 4. No lead time

- **Constraints**
 1. Inventory balance
 2. Setups

- **Approach**
 Formulation, Heuristics
2. Problem Description

Notation

Indices

t periods, \(t = 1, 2, \ldots, T \)

Parameters

\(K^R \) Setup cost for remanufacturing
\(K^M \) Setup cost for manufacturing
\(h^R \) unit inventory holding cost for recoverable inventory
\(h^M \) unit inventory holding cost for serviceable inventory
\(R_t \) number of return product
\(D_t \) demand for item type \(i \) for period \(t \)
\(Q \) sufficiently large number

Decision Variables

\(x^R_t \) amount of remanufacturing in period \(t \)
\(x^M_t \) amount of manufacturing in period \(t \)
\(y^R_t \) binary variables =1 if remanufacturing quantity is occured, 0 otherwise.
\(y^M_t \) binary variables =1 if manufacturing quantity is occured, 0 otherwise.
\(y^R_t \) inventory level for recoverable inventory at the end of period \(t \)
\(y^M_t \) inventory level for serviceable inventory at the end of period \(t \)
2. Problem Description

Formulation

Objective Function

\[
\min C = \sum_{t=1}^{T} \left(K^R \cdot y_t^R + K^M \cdot y_t^M + h^R \cdot y_t^R + h^M \cdot y_t^M \right)
\]

(1)

\[
y_t^R = y_{t-1}^R + R_t - x_t^R \quad \forall t = 1, \ldots, T
\]

(2)

\[
y_t^M = y_{t-1}^M + x_t^R + x_t^M - D_t \quad \forall t = 1, \ldots, T
\]

(3)

\[
x_t^R \leq Q \cdot y_t^R \quad \forall t = 1, \ldots, T
\]

(4)

\[
x_t^M \leq Q \cdot y_t^M \quad \forall t = 1, \ldots, T
\]

(5)

\[
y_0^R = y_0^M = 0
\]

(6)

\[
\gamma_t^R, \gamma_t^M \in \{0, 1\} \quad \forall i = 1, \ldots, T
\]

\[
y_t^R, y_t^M, x_t^R, x_t^M \geq 0 \quad \forall i = 1, \ldots, T
\]

Teunter et al. (2006) – NP-hard conjecture
3. Approach

Silver-Meal heuristic (1973)

Customers

Serviceable inventory

Manufacturing

\[K_\tau + h \sum_{\tau}^{z} y_t \]

\[\frac{z - \tau + 1}{C_{\tau,z}} \]
3. Approach

Adapted Silver-Meal heuristic

Option 1: Manufacture Only

\[x^M_{\tau} = \sum_{i=\tau}^{z} D_i \] \hspace{1cm} (7)

\[C^1_{\tau,z} = \frac{K^M + h^M \cdot \sum_{l=\tau}^{z} y^M_{l} + h^R \cdot \sum_{l=\tau}^{z} y^R_{l}}{z - \tau + 1} \] \hspace{1cm} (8)

Option 2: Remanufacture (and manufacture if necessary)

\[x^R_{\tau} = \min \left(y^R_{\tau-1} + R_{\tau}, \sum_{l=\tau}^{z} D_l \right) \]
\[x^M_{\tau} = \max \left(\sum_{l=\tau}^{z} D_l - y^R_{\tau-1} - R_{\tau}, 0 \right) \] \hspace{1cm} (9)

\[C^2_{\tau,z} = \frac{K^R + K^M \cdot y^M_{\tau} + h^M \cdot \sum_{l=\tau}^{z} y^M_{l} + h^R \cdot \sum_{l=\tau}^{z} y^R_{l}}{z - \tau + 1} \] \hspace{1cm} (10)
3. Approach

Adapted Silver-Meal heuristic

Option 3: Manufacture first, remanufacture (in multiple lots) later

\[
NR_t = \sum_{i=\tau}^{t} (D_i - R_i) - y_{t-1}^R \quad \forall t = \tau + 1, \ldots, z.
\] (11)

\[
x_{\tau}^M = \max\left(D_{\tau}, \max_{t=\tau+1,\ldots,z} (NR_t)\right), \quad x_{\tau}^R = 0
\] (12)

\[
x_{t}^M = 0, \quad x_{t}^R = \max\left(\sum_{i=\tau}^{t} D_i - \sum_{i=\tau}^{t-1} x_{i}^R - x_{\tau}^M, 0\right) \quad \forall t = \tau + 1, \ldots, z
\] (13)

\[
C_{\tau,z}^3 = \frac{\sum_{t=\tau}^{z} y_{t}^R \cdot K^R + [K_{M}^M] + h_{M}^M \cdot \sum_{i=\tau}^{z} y_{i}^M + h^R \cdot \sum_{t=\tau}^{z} y_{t}^R}{z - \tau + 1}
\] (14)
3. Approach

 Improvement initial solution
(Decrease the number of setups)

Step 1: Find initial schedule
- Determine net requirements using Equation (11)
- Determine x^M_i and x^R_i using Equation (12)
- Determine y^M_i and y^R_i using Equation (13)
- Determine y^M_i and y^R_i using Equations (2) and (3)

$C_{ini} = C^3_{t,z}$

Step 2: Improve the initial schedule for periods t to z
For $k = t + 1$ to z
If $x^R_i > 0$ then
$x^M_i = x^M_i + x^R_i, \quad x^R_i = 0$
For $i = t + 1$ to k
Update x^R_i using Equation (13)
Update y^M_i and y^R_i using Equations (2) and (3)
Next i

Determine $\Delta C_t(k) = C^3_{t,z} - C_{ini}$
Reset initial schedule
Find period l (period of the last remanufacturing lot before period k)
If $y^R_i \geq x^R_i$ then
$x^M_i = x^M_i + x^R_i, \quad x^R_i = 0$
Else
$x^M_i = x^M_i + (x^R_i - y^R_i), \quad x^R_i = y^R_i, \quad x^R_i = 0$
End If
Update y^M_i and y^R_i using Equations (2) and (3)
Determine $\Delta C_t(k) = C^3_{t,z} - C_{ini}$
End If
Next k

Step 3: Implement the best option
If $\min_{k \in [t+1, \ldots, z]} (\Delta C_t(k), \Delta C_t(k)) < 0$ then
Implement the best schedule which becomes the updated initial schedule
$C_{ini} = C_{ini} + \min_{k \in [t+1, \ldots, z]} (\Delta C_t(k), \Delta C_t(k))$, Goto Step 2:
End If
3. Approach

Adapted Silver-Meal heuristic

Option 4: Remanufacture first, manufacture (in multiple lots) later

\[x_{\tau}^M = 0, \quad x_{\tau}^R = y_{\tau}^R + R_{\tau} \] (15)

\[x_t^M = \max \left(\sum_{i=\tau}^{t} D_i - \sum_{i=\tau}^{t-1} x_i^M - x_{\tau}^R, 0 \right), \quad x_t^R = 0 \quad \forall t = \tau + 1, \ldots, z \] (16)

\[C_{\tau,z}^4 = \frac{K_{R}^R + \sum_{t=\tau}^{z} y_t^M \cdot K_t^M + h_t^M \cdot \sum_{t=\tau}^{z} y_t^M + h_{R}^R \cdot \sum_{t=\tau}^{z} y_t^R}{z - \tau + 1} \] (17)
4. Computational experiments

Environment

- MIP solver: CPLEX 11.0

DATA

- $T = 12$
- $K^M / K^R = \{200, 500, 2000\}$
- $h^M = 1, h^R = 0.2, 0.5, 0.8$
- $D_t = DU(0, 100)$
- Return ratio = $\{30\%, 50\%, 70\%\}$

Performance measure

- %GAP

$$100 \left(\frac{Z^*(.) - v(.)}{Z^*(.)} \right)$$

$Z^*(.)$: optimal
$v(.)$: heuristic value

6480 instances for each combination
4. Computational experiments for initial solution

Results

Table 1. Performance of the SM_2 and SM_4 heuristic.

<table>
<thead>
<tr>
<th></th>
<th>Percentage cost error to the optimal solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>SM_2</td>
</tr>
<tr>
<td>All instances</td>
<td>7.5%</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
</tr>
<tr>
<td>Small variance</td>
<td>7.2%</td>
</tr>
<tr>
<td>Large variance</td>
<td>7.8%</td>
</tr>
<tr>
<td>Returns</td>
<td></td>
</tr>
<tr>
<td>Small variance</td>
<td>7.3%</td>
</tr>
<tr>
<td>Large variance</td>
<td>7.7%</td>
</tr>
<tr>
<td>Return ratio</td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td>5.5%</td>
</tr>
<tr>
<td>50%</td>
<td>8.5%</td>
</tr>
<tr>
<td>70%</td>
<td>8.4%</td>
</tr>
<tr>
<td>K^M</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>4.3%</td>
</tr>
<tr>
<td>500</td>
<td>5.4%</td>
</tr>
<tr>
<td>2000</td>
<td>12.8%</td>
</tr>
<tr>
<td>K^R</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>10.9%</td>
</tr>
<tr>
<td>500</td>
<td>7.9%</td>
</tr>
<tr>
<td>2000</td>
<td>3.7%</td>
</tr>
<tr>
<td>h^R</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>5.9%</td>
</tr>
<tr>
<td>0.5</td>
<td>7.5%</td>
</tr>
<tr>
<td>0.8</td>
<td>9.1%</td>
</tr>
</tbody>
</table>
5. Computational experiments

Improvement solution

For $i = 1$ to T

If $x_{i}^{R} > 0$ then

Find period n (period of the next manufacturing lot after period i)

If $i + 1 \leq n \leq T$ then

$x_{i}^{R} = x_{i}^{R} + \min(x_{n}^{M}, \min_{k \in \{i, \ldots, T\}}(y_{k}^{R}))$

$x_{n}^{M} = \max(x_{n}^{M} - \min_{k \in \{i, \ldots, T\}}(y_{k}^{R}), 0)$

Update y_{i}^{M} and y_{i}^{R} using Equations (2) and (3)

If total cost determined by Equation (1) cannot be reduced then

Reverse decisions made regarding x_{i}^{R} and x_{n}^{M}

Update y_{i}^{M} and y_{i}^{R} using Equations (2) and (3)

End If

Else If $y_{i}^{M} > 0$ then

Find period l (period of the last manufacturing lot before period i)

$x_{i}^{R} = x_{i}^{R} + \min(y_{i-1}^{M}, y_{i}^{M}, \min_{j \in \{i, \ldots, T\}}(y_{j}^{R}))$

$x_{i}^{M} = \max(y_{i-1}^{M} - \min_{j \in \{i, \ldots, T\}}(y_{j}^{R}), 0)$

Update y_{i}^{M} and y_{i}^{R} using Equations (2) and (3)

If total cost determined by Equation (1) cannot be reduced then

Reverse decisions made regarding x_{i}^{R} and x_{n}^{M}

Update y_{i}^{M} and y_{i}^{R} using Equations (2) and (3)

End If

End If

End If

Next i
5. Computational experiments

Results

Table 2. Performance of the SM_2^+ and SM_4^+ heuristic.

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Standard deviation</th>
<th>Maximum</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SM_2^+</td>
<td>SM_4^+</td>
<td>SM_2^+</td>
<td>SM_4^+</td>
</tr>
<tr>
<td>All instances</td>
<td>6.9%</td>
<td>2.2%</td>
<td>7.9%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small variance</td>
<td>6.6%</td>
<td>2.1%</td>
<td>7.9%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Large variance</td>
<td>7.2%</td>
<td>2.4%</td>
<td>8.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Returns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small variance</td>
<td>6.8%</td>
<td>2.2%</td>
<td>7.8%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Large variance</td>
<td>7.1%</td>
<td>2.3%</td>
<td>8.0%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Return ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td>4.9%</td>
<td>1.2%</td>
<td>5.4%</td>
<td>1.8%</td>
</tr>
<tr>
<td>50%</td>
<td>8.0%</td>
<td>2.3%</td>
<td>9.3%</td>
<td>2.7%</td>
</tr>
<tr>
<td>70%</td>
<td>8.0%</td>
<td>3.3%</td>
<td>8.0%</td>
<td>3.5%</td>
</tr>
<tr>
<td>K^M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>3.5%</td>
<td>2.3%</td>
<td>4.0%</td>
<td>2.6%</td>
</tr>
<tr>
<td>500</td>
<td>4.8%</td>
<td>2.1%</td>
<td>4.9%</td>
<td>2.5%</td>
</tr>
<tr>
<td>2000</td>
<td>12.6%</td>
<td>2.3%</td>
<td>9.9%</td>
<td>3.4%</td>
</tr>
<tr>
<td>K^R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>10.0%</td>
<td>1.9%</td>
<td>9.4%</td>
<td>2.1%</td>
</tr>
<tr>
<td>500</td>
<td>7.3%</td>
<td>3.4%</td>
<td>6.6%</td>
<td>3.2%</td>
</tr>
<tr>
<td>2000</td>
<td>3.6%</td>
<td>1.4%</td>
<td>5.9%</td>
<td>2.9%</td>
</tr>
<tr>
<td>k^R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>5.8%</td>
<td>1.7%</td>
<td>8.0%</td>
<td>2.5%</td>
</tr>
<tr>
<td>0.5</td>
<td>7.0%</td>
<td>2.3%</td>
<td>7.7%</td>
<td>3.0%</td>
</tr>
<tr>
<td>0.8</td>
<td>8.1%</td>
<td>2.8%</td>
<td>7.8%</td>
<td>3.0%</td>
</tr>
</tbody>
</table>
5. Conclusions

Overview

- Dynamic lot-sizing problem for the single item
- Remanufacturing / manufacturing system with returned product
- Suggested formulation and heuristic

Further research

- More detailed modeling of the remanufacturing process
- Disposal option for the recoverable parts when they are not required
- To adapt rolling horizon environment
- Uncertainty demand