Production and Logistics Information

A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem

Jin Deng, Ling Wang, Sheng-yao Wang & Xiao-long Zheng(2015)

Zhou Yidong 2016.01.03

Contents

- 1. Introduction
- 2. MILP Model
- 3. Competitive Memetic Algorithm
- 4. Computational Results And Comparisons
- 5. Conclusions

Introduction

Problem review

- Distributed two-stage assembly flow-shop scheduling(DTSAFSP)
 - f identical factories
 - ✓ First stage: Elements processed on parallel machines
 - ✓ Second stage: A single assembly machine
 - *n* jobs need to be processed
 - ✓ Factory assignment
 - ✓ Sequencing
- Np-hard problem
 - f = 1 is two stage assembly flow-shop scheduling problem(TSADSP)

Introduction

***** Literature review

Problem	Description	Authors
DSSP	a decomposition-based method by hybridising variable neighbourhood search (VNS), tabu search (TS)	Behnamian (2014)
	6 IP models to fomulated distributed permutation flowshop problem	Naderi and Ruiz(2010)
	an adaptive genetic algorithm (GA)	Chan, Chung, and Chan (2005)(2006)
DTSAFSP	developed a reduced VNS (RVNS) to perform local search withn makespan objective	Xiong and Xing (2014)
	GA-VNS with makespan and total completion time objective	Xiong et al. (2014)

Performance comparison with Xiong and Xing (2014) and Xiong et al. (2014)

Introduction

Problem description

- Problem
 - Distributed two-stage assembly flow-shop scheduling(DTSAFSP)
- Objective
 - Minimum makespan
- Decision variable
 - Factory assignment
 - Sequencing in each factory
- Algorithms
 - A competitive memetic algorithm
- Assumption
 - Permutation scheduling
 - Factories identical
 - Independent setup time

MILP Model

Notations

- *n* the total number of jobs
- *m* the total number of machines at the first stage
- f the total number of factories
- $S_{1,ik}$ the set-up time of job *i* on machine *k* at the first stage
- $S_{2,i}$ the set-up time of job *i* on assembly machine at the second stage
- $p_{i,k}$ the processing time of job *i* on machine *k* at the first stage
- t_i the assembly time of jobs job *i* on assembly machine
- *L* a very large positive number
- X_{ij} a binary variable that equals to 1 if job *j* is processed immediately after job *i* and 0 otherwise
- $C_{i,k}$ the completion time of job *i* on machine *k* at the first stage
- *CA_i* the completion time of job *i* on assembly machine
- *C_{max}* the makespan

MILP Model

MILP Model

Minimise C_{max}

(1)

(2)

Subject to:

$$\sum_{j=0, j \neq i}^{n} X_{0,j} = f$$

$$\sum_{i=1}^n X_{i,0} = f - 1$$

$$\begin{split} X_{i,j} + X_{j,i} &\leq 1 \quad \forall i = 1, 2, \dots, n - 1, \ j > i \\ C_{j,k} &\geq C_{i,k} + S_{1,jk} + p_{j,k} - L(1 - X_{i,j}) \quad \forall i = 0, 1, \dots, n; \ j = 1, 2, \dots, n, \ j \neq i; \ k = 1, 2, \dots, m \\ CA_j &\geq CA_i + s_{2,j} + t_j - L(1 - X_{i,j}) \quad \forall i = 0, 1, \dots, n; \ j = 1, 2, \dots, n, \ j \neq i \\ CA_i &\geq C_{i,k} + t_i \quad \forall i = 1, \dots, n; \ k = 1, 2, \dots, m \\ C_{\max} &\geq CA_i \quad \forall i = 1, 2, \dots, n \\ X_{i,j} \in \{0, 1\} \quad \forall i, j = 0, 1, \dots, n \end{split}$$

$$C_{i,k} \ge 0 \quad \forall i = 1, 2, ..., n; \quad \forall k = 1, 2, ..., m$$
 (12)

$$C_{0,k} = CA_0 = 0, \quad \forall k = 1, 2, \dots, m$$
 (13)

Jobs precedence and succeeding relations (3) (4) --Dummy jobs appeared times (5) (6)Precedence relations for the first stage (7)(8)Precedence relations for the second stage (9)(10)(11)

Competitive Memetic Algorithm(CMA)(1)

- Encoding scheme
 - Individual X_i is represented by a string, contains:
 - ✓ all jobs for sequencing
 - ✓ f-1 asterisks for factory assignment
 - Example:

- Initialization and neighbourhood structure
 - All population size initial individuals are generated randomly
 - Neighbourhood structure
 - ✓ ring structure
 - ✓ each individual has two adjacent neighbours
 - Figure:

Flow chart of the CMA

Competitive Memetic Algorithm(CMA)(2)

- Competition
 - Elite competition with its two neighbours, better than neighbours than regarded as winner
 - Parallel search for global exploration
 - Insert and swap operators
 - ✓ Exter-factory insert

Longer makespan Shorter makespan

✓ Exter-factory swap

3 4 * 1 7 5 * 6 2
$$\rightarrow$$
 3 4 * 1 6 5 * 7 2

✓ Inter-factory swap

For every winner three operators are performed one by one

Competitive Memetic Algorithm(CMA)(3)

- Local intensification
 - Main idea: modifying the schedule in the factory with largest completion time
 - Three local intensification operators

✓ LS1

Randomly select a job from F_c and another factory $F_k(k \neq c)$ Remove the job from F_c and insert it into all possible positions in F_k , and choose the best (F_c the factory with largest completion time)

```
✓ LS2
```

Randomly select a job from F_c and another job from another factory $F_k(k \neq c)$, exchange two jobs \checkmark LS3

Randomly select two jobs from F_c , swap two jobs

 Using three operators ono by one with local search times for the best individual of the population

Competitive Memetic Algorithm(CMA)(4)

- Sharing
 - Main idea: better individuals can guide worse ones to the promising regions

(similar to GA algorithm's crossover operator)

- For every loser X_i , denote better neighbour as X_j , order crossover is used to update X_i

Step 1: Randomly generate two cross points.

Step 2: O_1 and O_2 inherit the sub-sequences between the two cross points from X_j and X_i .

Step 3: From the position after the second cross point of X_i , delete the elements that appear in the sub-sequence of X_j ; and then fill the remaining elements into O_1 from the second cross point one by one. Similarly, produce O_2 by exchanging the roles of X_i and X_j

Data generation and parameter setting

• Range of data

Problem parameters	Small scale	Large scale		
f n m $S_{1,ik}$ $S_{2,i}$ $p_{i,k}$		$ \begin{array}{c} \{2, 3, 4, 5, 6\} \\ \{20, 50, 100, 200, 500\} \\ \{2, 4, 6, 8\} \\ U(1, 20) \\ U(1, 20) \\ U(1, 100) \end{array} $		
t_i	U(1, 100)	U(1, 100)		

• Stopping criterion: CPLEX 3600s ; CMA $0.1 \times ns$.

• Parameter setting

- Population size(PS) and local search(LS) times
- 4 factor levels(one-way ANOVA analysis)

	Factor levels							
Factor	1	2	3	4				
PS LS	10 10	30 50	50 100	70 150				

- One-way ANOVA analysis results
 - \checkmark PS = 70, LS = 50 (small-scale)
 - \checkmark PS = 30, LS = 50 (large-scale)

Computational results of the CMA and CPLEX

• Results of CPLEX and the CMA for small-scale instances

				CPL	EX		СМА				
Instance	f	n	m	Makespan	Time (s)	Best	Ave	SD	Time (s)		
1	2	8	2	282*	1.70	282	282.00	0.00	0.80		
2	2	8	3	290*	1.92	290	290.00	0.00	0.80		
3	2	8	4	346*	5.52	346	346.00	0.00	0.80		
4	2	10	2	340*	288.32	340	340.05	0.22	1.00		
5	2	10	3	425*	641.15	425	425.00	0.00	1.00		
6	2	10	4	378	3600	374	374.25	0.45	1.00		
7	2	12	2	382	3600	382	382.10	0.44	1.20		
8	2	12	3	416	3600	414	414.15	0.49	1.20		
9	2	12	4	401	3600	401	401.00	0.00	1.20		
10	3	8	2	248*	0.47	248	248.00	0.00	0.80		
11	3	8	3	277*	0.87	277	277.00	0.00	0.80		
12	3	8	4	262*	0.70	262	262.00	0.00	0.80		
13	3	10	2	255*	16.66	255	255.00	0.00	1.00		
14	3	10	3	299*	140.48	299	299.20	0.61	1.00		
15	3	10	4	299*	62.87	299	299.00	0.00	1.00		
16	3	12	2	234	3600	234	234.20	0.89	1.20		
17	3	12	3	341	3600	341	341.00	0.00	1.20		
18	3	12	4	338	3600	338	338.15	0.36	1.20		
19	4	8	2	170*	0.25	170	170.00	0.00	0.80		
20	4	8	3	216*	0.33	216	216.00	0.00	0.80		
21	4	8	4	268*	0.33	268	268.00	0.00	0.80		
22	4	10	2	232*	4.84	232	232.00	0.00	1.00		
23	4	10	3	242*	6.88	242	242.00	0.00	1.00		
24	4	10	4	228*	1.14	228	228.00	0.00	1.00		
25	4	12	2	246*	219	246	246.20	0.41	1.20		
26	4	12	3	264*	573.68	264	264.00	0.00	1.20		
27	4	12	4	251	3600	251	251.00	0.00	1.20		

- ✓ CPLEX and the CMA obtain the same results on 25 instances including 19optimal solutions.
- ✓ The CMA outperforms CPLEX on instances #6 and #8.

• The CMA is more effective than CPLEX in solving the small-scale problem

Comparison of the CMA and existing algorithms(1)

• Results of the algorithms for large-scale instances(f = 2)

	СМА			VNS			Hypothesis test (CMA vs. VNS)		GA-RVNS			Hypothesis test (CMA vs. GA-RVNS)	
Instance	Best	Ave	SD	Best	Ave	SD	p-Value	Sig	Best	Ave	SD	p-Value	Sig
F2 1	686	686.35	0.77	686	686.50	1.00	0.62	Ν	686	700.05	9.77	0.000	Y
$F2^2$	711	711.10	0.09	711	711.20	0.52	0.47	Ν	711	715.15	2.32	0.000	Y
$F2^{-}3$	773	773.30	0.22	773	773.05	0.22	0.04	Y	773	780.10	7.77	0.001	Y
F2 4	731	731.85	0.56	731	732.70	1.45	0.03	Y	731	743.95	9.61	0.000	Y
F2 5	1517	1517.20	0.17	1517	1521.15	2.28	0.00	Y	1522	1529.95	9.19	0.000	Y
F2_6	1598	1599.10	1.15	1598	1602.55	3.49	0.00	Y	1599	1613.75	14.05	0.000	Y
F2 7	1764	1764.05	0.05	1764	1764.50	0.69	0.01	Y	1764	1766.95	2.84	0.000	Y
F2_8	1607	1609.55	1.73	1608	1616.25	4.91	0.00	Y	1611	1626.75	14.36	0.000	Y
F2 9	3228	3228.00	0.00	3228	3238.80	8.35	_	_	3231	3252.60	14.17	_	_
F2 10	3141	3141.10	0.20	3141	3144.50	2.04	0.00	Y	3141	3145.15	4.04	0.000	Y
$F2_{11}$	3198	3198.35	0.45	3198	3202.15	2.74	0.00	Y	3198	3204.25	5.01	0.000	Y
F2 12	3414	3414.00	0.00	3414	3414.65	0.67	_	_	3414	3418.75	4.58	-	_
F2 13	6244	6244.00	0.00	6244	6244.25	0.44	_	_	6244	6249.65	5.01	-	_
$F2^{-}14$	6431	6431.00	0.00	6431	6431.85	0.93	_	_	6432	6437.15	5.70	-	_
$F2^{-15}$	6588	6588.00	0.00	6588	6588.30	0.57	_	_	6588	6595.15	6.08	_	_
F2 16	6162	6162.15	0.13	6162	6164.90	2.83	0.00	Y	6162	6170.60	11.60	0.004	Y
$F2^{-17}$	15,403	15403.25	0.30	15,406	15417.20	8.81	0.00	Y	15,408	15425.50	14.55	0.000	Y
$F2^{-18}$	15,683	15683.30	0.54	15,684	15697.50	8.79	0.00	Y	15,684	15707.00	12.82	0.000	Y
F2 19	15,598	15598.05	0.05	15,598	15599.80	1.25	0.00	Y	15,598	15601.50	3.80	0.001	Y
F2_20	15,864	15864.05	0.05	15,864	15866.10	1.86	0.00	Y	15,864	15871.80	7.99	0.000	Y

- Hypothesis test with 95% confidence interval :
 P-value smaller than
 - 0.05, the difference between two algorithms is significant, and marked "Y".

Comparison of the CMA and existing algorithms(2)

• Results of the algorithms for large-scale instances(f = 6)

	СМА			VNS			Hypothesis test (CMA vs. VNS)		GA-RVNS			Hypothesis test (CMA vs. GA-RVNS)	
Instance	Best	Ave	SD	Best	Ave	SD	p-Value	Sig	Best	Ave	SD	p-Value	Sig
F6 1	258	260.75	1.25	262	280.95	13.95	0.00	Y	265	290.70	17.20	0.00	Y
F6_2	268	270.35	1.69	269	282.50	7.60	0.00	Y	277	293.95	14.04	0.00	Y
F6_3	278	280.85	1.87	285	298.15	10.58	0.00	Y	283	301.85	11.69	0.00	Y
F6 4	268	271.35	2.56	278	285.65	6.16	0.00	Y	278	294.90	11.57	0.00	Y
F6_5	520	521.80	1.54	538	551.95	7.00	0.00	Y	555	574.60	13.93	0.00	Y
F6_6	563	563.55	0.60	569	584.95	5.88	0.00	Y	586	604.75	13.56	0.00	Y
F6_7	535	539.95	2.56	559	572.70	9.55	0.00	Y	549	592.30	16.60	0.00	Y
F6_8	581	586.60	2.98	609	625.10	9.63	0.00	Y	617	638.15	14.79	0.00	Y
F6_9	1125	1125.30	0.57	1145	1157.90	6.66	0.00	Y	1153	1186.80	20.65	0.00	Y
F6_10	1059	1060.05	0.69	1072	1085.55	7.16	0.00	Y	1083	1113.20	20.06	0.00	Y
F6_11	1069	1071.90	1.92	1106	1115.60	6.87	0.00	Y	1100	1146.25	28.49	0.00	Y
F6_12	1120	1121.60	1.23	1153	1162.60	4.99	0.00	Y	1160	1192.50	26.77	0.00	Y
F6_13	2021	2021.30	0.98	2045	2063.60	11.27	0.00	Y	2067	2104.75	23.57	0.00	Y
F6_14	2174	2174.15	0.37	2184	2195.75	8.08	0.00	Y	2190	2225.45	37.16	0.00	Y
F6_15	2130	2130.00	0.00	2145	2155.45	6.50	_	_	2148	2192.40	24.43	_	-
F6_16	2151	2151.35	0.88	2177	2192.15	10.40	0.00	Y	2192	2229.10	25.33	0.00	Y
F6_17	5166	5166.45	0.51	5189	5206.50	10.71	0.00	Y	5203	5258.95	39.85	0.00	Y
F6_18	5107	5107.05	0.22	5136	5153.65	11.88	0.00	Y	5157	5223.95	47.76	0.00	Y
F6_19	5176	5178.40	1.79	5237	5257.95	12.43	0.00	Y	5277	5353.75	65.09	0.00	Y
F6_20	5213	5214.80	1.44	5258	5276.10	11.53	0.00	Y	5281	5363.50	69.94	0.00	Y

- The CMA significantly outperforms the VNS on 85 of 100 instances , the CMA significantly outperforms the GA-RVNS on 87 of 100 instances
- As the number of factories f increases, the superiority of the CMA over the VNS and GA-RVNS becomes more obvious

 \checkmark f = 3,4,5 omitted

Comparison of the CMA and existing algorithms(3)

- CMA is faster in solving the instances
- Computational results: The CMA is a more powerful algorithm for solving the large-scale DTSAFSP.

Conclusion

• Distributed two-stage assembly flow-shop scheduling

- Makespan objective with setup time
- Influence of parameter setting
- · Comparisons between CMA and CPLEX; CMA and the existing VNS and GA-RVNS

Suggested

- MILP model
- CMA algorithms

Further research

- The design of new mechanisms for performing competition and sharing
- The applications to other kinds of scheduling problems, including the multi-objective optimisation problems
- Apply the algorithm to some real-world distributed scheduling problems(multi-factories car engine manufacturing)
- Adv & Disadv

Production and Logistics Information

THANK YOU