A branch & bound algorithm for the open-shop problem

Peter Brucker, Johann Hurink, Bernd Jurisch, Birgit Wostmann

1997 Discrete Applied Mathematics
Contents

- Introduction
- A branch & bound algorithm
 - The disjunctive graph model
 - Basic concepts of the branch & bound algorithm
 - A Branching scheme
 - Heads and tails
 - Immediate selection
 - Lower bounds
- Computational results
- Concluding remarks
Introduction

- Preview
 - Open-shop
 - n jobs with J_1, \ldots, J_n
 - m machines with M_1, \ldots, M_m
 - Each job J_i consists of m operations O_{ij} ($j=1,\ldots, m$)
 - Decision point
 - Sequence jobs on each machine
 - Sequence operations(machines) of each job
Introduction

- Literature review
 - developed polynomial algorithm for $m=2$, $n=2$ and allowed preemptions case (1976)
 - Two-machine problem is solvable in polynomial time even under the consideration of one additional resource (in 1997, to appear)
 - under regular criteria, proven NP-hard (1991)
 - when $p_{ij}=1$, developed polynomial algorithm. (1993 [2], 1988[10])
A branch & bound algorithm

- Disjunctive graph model

(a) Disjunctive graph
(b) Complete selection
A branch & bound algorithm

- Basic concepts of the branch & bound algorithm
 - Every search tree node $r \rightarrow G(F_r) = (V, F_r)$
 - F_r: set of fixed disjunctive arcs in node r
 - Branching is done by dividing $Y(r)$ into disjoint subsets $Y(s_1),...,Y(s_q)$ for some q
 - ex) $1 \rightarrow \{2,3,4,5,...,10\}$
 - $12 \rightarrow \{3,4,5,...,10\}$
 - $123 \rightarrow \{4,5,...,10\}$
 - Set $\text{LB}(r) = \infty$ if the corresponding graph $G(F_r)$ contains a cycle
 - UB is updated when a new feasible solution is found which improves UB
A branch & bound algorithm

- A branching scheme
 - P: critical path in the graph $G(S)$
 - S: Complete selection
 - $L(S)$ be the length of P
 - block on P in $G(S)$
 - all u_i are either processed on the same machine or belong to the same job
 - extending the sequence from either side results in the violation of (a)
A branch & bound algorithm

- A branching scheme

- Theorem 1.

 Let S be a complete selection corresponding to some solution of the open-shop problem and let P be a critical path in $G(S)$. If there exists another complete selection S' such that $L(S') < L(S)$, then there is a block $u_1, ..., u_l$ on P and an operation u_i in it such that either u_i is before u_1 in S' or u_i is after u_l in S'.

\[L(S) \quad \rightarrow \quad L(S') \]
A branch & bound algorithm

A branching scheme

- Concept
 - Assume that, we have complete selection “S”
 - Calculate block; Each block has 2 candidate operations
 - Checking the theorem
 - after change the sequence in a block

(1) If (1) is better then any other, fix the disjunctive arcs
 - after-candidate, also checking
 - Choose the first checking block with maximal cardinality

(2)
(3)
(4)
(5)
A branch & bound algorithm

Procedure Branch & Bound (r)

BEGIN
 Calculate a solution y corresponding to a selection $S \in Y(r)$ using heuristics;
 IF $C_{\text{max}}(S) < UB$ THEN UB := $C_{\text{max}}(S)$;
 Calculate a critical path P;
 Calculate the blocks of P;
 Calculate the sets E^B_j and E^A_j;
 FOR ALL operations $i \in E^\mu_j$ with $j = 1, \ldots, k$ and $\mu = A, B$ DO
 Fix disjunctions for the corresponding successor s;
 Calculate a lower LB(s) for node s;
 IF LB(s) $< UB$ THEN Branch & Bound (s)
 END
END
A branch & bound algorithm

- Heads and tails
 - Concept
 - head
 - tail

- Calculations
 - Head
 \[r_i = \max_{J \subseteq Q, \; R \subseteq R_i} \left\{ \min_{J \subseteq J_i} r + \sum_{j \in J} p_j \right\}, \]
 - Tail
 \[q_i = \max_{J \subseteq Q_i', \; R \subseteq R_i'} \left\{ \sum_{J \subseteq J_i} p_j + \min_{J \subseteq J_i} q_j \right\}. \]

J(Q: job, R: machine)
A branch & bound algorithm

- Lower bounds
 - using Head/Tail
 - tail
 $$r_i + p_i + \max \left\{ \max_{j \in B_k \setminus \{i\}} (p_j + q_j); \sum_{j \in B_i \setminus \{i\}} p_j + \min_{j \in B_t \setminus \{i\}} q_j \right\}$$

 - head
 $$\left\{ \max_{j \in B_i \setminus \{i\}} (r_j + p_j); \min_{j \in B_i \setminus \{i\}} r_j + \sum_{j \in B_i \setminus \{i\}} p_j \right\} + p_i + q_i$$
A branch & bound algorithm

- Calculation of heuristic solutions
 - for complete selection
- Considering Point
 - is it optimal?
 - under makespan measure, the only considering point is “Critical path”
 - characteristic of the openshop (Unclear)

- Heuristic with matching algorithm
 - matching with Job, Machine, Operation (Job-Machine matching), unconflict,
 - apply priority rule

- sum-matching/minimization:
 \[
 \min \left\{ \sum_{(U,M) \in A} p_{ij} \mid A \text{ is a matching of maximal cardinality} \right\}
 \]

- sum-matching/maximization:
 \[
 \max \left\{ \sum_{(U,M) \in A} p_{ij} \mid A \text{ is a matching of maximal cardinality} \right\}
 \]

- bottleneck-matching/minimization:
 \[
 \min \left\{ \max_{(U,M) \in A} p_{ij} \mid A \text{ is a matching of maximal cardinality} \right\}
 \]

- bottleneck-matching/maximization:
 \[
 \max \left\{ \min_{(U,M) \in A} p_{ij} \mid A \text{ is a matching of maximal cardinality} \right\}
 \]

- modified bottleneck-matching/minimization:
 \[
 \min \left\{ \max_{(U,M) \in A} \{r_{ij} + p_{ij}\} \mid A \text{ is a matching of maximal cardinality} \right\}
 \]

- modified bottleneck-matching/maximization:
 \[
 \max \left\{ \min_{(U,M) \in A} \{r_{ij} + p_{ij}\} \mid A \text{ is a matching of maximal cardinality} \right\}
 \]
Computational results

- **Instances**
 - **Benchmark problems**
 - B&B1 : sum-matching/minimization
 - B&B2 : sum-matching/maximation
 - B&B3 : Modified bottleneck-matching/minimization
 - **Table 1 : Optimal solution(time)**
 - **Table 2. : Number of search tree nodes/CPU time**

<table>
<thead>
<tr>
<th>(n,m)</th>
<th>Nodes</th>
<th>B & B₁</th>
<th>B & B₂</th>
<th>B & B₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4,4)</td>
<td>33</td>
<td>27</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>(5,5)</td>
<td>542</td>
<td>471</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.2</td>
<td>11.4</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td>(7,7)</td>
<td>17353</td>
<td>10988</td>
<td>7340</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1374.0</td>
<td>824.6</td>
<td>565.9</td>
<td></td>
</tr>
<tr>
<td>(8,8)</td>
<td>8284</td>
<td>1380</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td></td>
<td>854.0</td>
<td>149.4</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td>(9,9)</td>
<td>172832</td>
<td>12654</td>
<td>139893</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32016.1</td>
<td>1870.3</td>
<td>23301.0</td>
<td></td>
</tr>
<tr>
<td>(10,10)</td>
<td>101995</td>
<td>315869</td>
<td>274347</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25259.3</td>
<td>75249.1</td>
<td>64665.1</td>
<td></td>
</tr>
</tbody>
</table>
Computational results

- Results
 - Table 3: compare with Tailied, Brasel
 - Table 4: Hardness of instances
 - LB: Trivial Lower bound (Maximum Sum of processing times)
 - MIN: (Minimum sum of processing times)
 - DIFF: MIN/LB
 - WORKLOAD: total processing time / (m * LB)
 - Table 5: different solution methods
 - vs timilimet
 - UBneu: solution found by tabu search
 - CPUneu: CPU time for the tabu search
Concluding remarks

- Problem
 - Openshop problem (m x n)
- Branch & Bound algorithm
 - Solution with Matching problem
- Comparing
 - with literatures
- ADV/DISADV