
Part type selection problem in flexible manufacturing
systems: tabu search algorithms

Annals of Operations Research(1993)
Bharatendu Sivastava and Wun-Hwa Chen

Kyung Cheol Jang
 2016.01.28

I

D
E
X

 Part type selection problem

M/C M/C M/C M/C

FMS

Production planning and control

Order pool

1

 Objective
 Maximizes the total weight of the part types selected in the batch

 Decision variables
 Tool type selection
 Batching assignment

 Assumptions
 Only one tool can be used at a time, there is no tool duplication on any machine
 There is no overlapping of tools on any machine

 Each part type in the current batch must be processed completely for the
 entire order quantity

 The quality of product is not considered

 Problem
 Part type selection problem

2

 Parameters
 n number of part types
 𝑚 number of machine types
 𝐾 number of tool types
 𝑤𝑖 weight associated with part type i
 𝑔𝑘 number of tool slots required by tool type k
 𝑡𝑖𝑗 required processing time for a set of operations, for the entire order quantity

 of part type i to be performed on machine type j
 𝑏𝑗 total processing time available on machine type j

 𝑕𝑗 tool magazine capacity of machine type j

 𝐾𝑖𝑗 set of tool types required for part type i in machine type j

 Decision variables

 𝑥𝑖 0-1 variable that has value 1 if part type i is selected in the current batch,
 and 0 otherwise
 𝑦𝑘𝑗 0-1 variable that has value 1 if tool type k is assigned to machine type j,

 and 0 otherwise

3

 Mathematical Formulation

 Maximizes the total weight of the part types selected in the batch

max 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

subject to 𝑡𝑖𝑗𝑥𝑖

𝑛

𝑖=1

≤ 𝑏𝑗

 𝑔𝑘𝑦𝑘𝑗

𝑛

𝑖=1

≤ 𝑕𝑗

for j = 1,….m, (2)

 (1)

for j = 1,….m, (3)

𝑥𝑖 ≤ 𝑦𝑘𝑗 for i = 1,….n, j = 1,….m, and k ∈ 𝐾𝑖𝑗 (4)

𝑥𝑖 = 0 or 1 for i = 1,….n, (5)

𝑦𝑘𝑗 = 0 or 1 for k = 1,….K, and j = 1,….m (6)

4

c

Current solution

move

move

neighborhood
 The method explores the solution space by moving at
 each iteration from a solution s to the best solution in a
 subset of its neighborhood.

 Transition is done even though the best neighboring
 solution is wore than the given solution.

 Tabu list
 : To avoid cycling, solutions possessing some attributes

of recently explored solutions are temporarily declared
tabu or forbidden

 Aspiration level
 : a tabu move can be allowed if it create a solution better
 than the best solution obtained so far

 Tabu search

5

2) Tabu search algorithm

c

Choose a candidate solution

Check constraints

Best
Solution?

Save as best solution

No

Initial solution

Neighborhood generation

Save as current solution

Tabu?
Aspiration
condition

No

Yes

No

Adjust tabu list Stop

No

Yes

6

2) Tabu search algorithm

 Neighborhood generation

 Solution representation

 Move

 Termination condition

c 7

1 1 1 1 1

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

0 1 1 1 1

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

 Improving move
 𝒘𝒗𝟏 ≥ 𝒘𝒗𝟐≥ ∙∙∙∙∙∙ ≥ 𝒘𝒏

 Non improving move
 𝒑𝒖𝟏 ≤ 𝒑𝒖𝟐 ≤ ∙∙∙∙∙∙ ≤ 𝒑𝒖𝒏

𝑝𝑖 = 𝑤𝑖 + 𝜇(𝑓𝑟𝑒𝑞𝑖)

 Max_interation = 3n

Current solution

neighborhood

1 1 1 1 1

0 1 1 1 1

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

 x = 1 - x

 Tabu List
 Tabu list size

1) as a function of problem size 𝑞 =
𝑛

10
, (in the preliminary stages of developing the

 algorithm, several different functions of problem size were tested and this was found
 to be the best)

 2) the "magic" number, q = 7, which is cited as appropriate for many applications in the
 literature
 3) dynamically varying q by a process where q is initialized at initial_tabu_size and is
 incremented by tabu._size_inc after every n iterations (based on the trial runs,
 initial_tabu_size was set at 5 and tabu_size_inc was set at 3).

8

 Tabu List
 Long term memory

1) Penalized frequency method

2) Constrained frequency method

𝑝𝑖 = 𝑤𝑖 + 𝜇(𝑓𝑟𝑒𝑞𝑖)

 F = *𝑖: 𝑓𝑟𝑒𝑞𝑖/𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 < 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙_𝑓𝑟𝑒𝑞+

𝜇 ∶ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑝𝑟𝑎𝑚𝑖𝑡𝑒𝑟 10

9

 Implementations of tabu search heuristics

1) TS1 : tabu search with long term memory implemented using the

 penalized frequency method and the size of tabu list 𝑞 =
𝑛

10

2) TS2 : tabu search with long term memory implemented using the constrained

 frequency method and the size of tabu list 𝑞 =
𝑛

10

3) TS3 : tabu search with long term memory implemented using the penalized
 frequency method and the size of tabu list 𝑞 = 7

4) TS4 : tabu search with long term memory implemented using the penalized
 frequency method and the size of tabu list is encremented dynamically

10

 Experimentation environment

 Tool : IBM 3092, C
 Part type size : 50, 75, 100, 125
 Machine type size : 10, 15, 25
 Weight coefficient : U[10~100]
 𝑔𝑘 number of tool slots for tool type : 1, with a probability of 0.8
 2, with a probability of 0.15
 3, with a probability of 0.05

13
11

 Result

𝑈𝐵𝑃𝐺 = (𝑈𝐵 − 𝑣 𝑃)/𝑈𝐵 * 100

Avg(Max) Avg(Total) standard
deviation

SA 14.35 3.633 5.56

TS1 2.75 1.573 1.207

12

 Result

15
13

 Conclusion

 Part type selection problem

 Tabu Search Algorithm

1) Penalized frequency method

2) Constrained frequency method

 Adv & Disadv

14

