An efficient heuristic for a two-stage assembly scheduling problem with batch setup times to minimize makespan

Ching-Jong Liao , Cheng-Hsiung Lee, Hong-Chieh Lee(2015)

Contents

1. Introduction
2. Literature review
3. Problem definition
4. Development of proposed heuristic
5. Development of a lower bound
6. Computational results
7. Conclusions and future research

Introduction

- Problem review
- Two-stage assembly scheduling
- Problem originated form motor factory
- Batch setup time: starting processing components \& switching the item of component
- Product: each product is assembled with one or more common components

Fig. 1. Production flow line of a motor factory.

Introduction

- Example
\checkmark A four-product and three-component type problem

Fig. 2. An example of a four-product and three-component type.

Literature review

- M-machine flow shop scheduling
- Permutation flowshop problem
- Np-hard problem

- Literature review

Problem	Description	Authors
Single- machine extension	B\&B algorithms to solve a problem with precedence constraints	weighted flow-time problems

Problem definition

- Problem
- The two-stage assembly scheduling problem
- Objective
- Minimum makespan
- Decision Variable
- Sequencing
- Approach \& Algorithms
- Proposed heuristic
- Assumption
- All components are available at time zero
- At any time, machine can process at most one operation
- non-preemptive
- All setup times are identical
- unlimited buffer
- The processing constraint is non-permutation

Problem definition

- Notations

- N
- n
- L
- M_{i}
- J_{j}
- C_{k}
- $t\left(C_{k}\right)$
- A_{j}
- $t\left(A_{j}\right)$
- s
- U
- S
- B
- D
- B_{j}
- |B|
- $\left|B_{j}\right|$
- $T(B)$
- $T\left(B_{j}\right)$
number of products number of components types number of components for each product machine $i, i=1,2$
product $j, j=1,2, \ldots, N$
component $k, k=1,2, \ldots, n$
processing time of C_{k} assembly operation of J_{j} operation time of A_{j} setup time set of unscheduled products set of scheduled products set of unscheduled components set of scheduled components set of unscheduled components in J_{j} number of components types in B number of components types in B_{j} total processing time of B total processing time of B_{j}

Problem definition

- Mixed integer programing (MIP):
* An optimal way is Formulate the problem into a mathematical problem, solve problem by commercial optimization software(CPLEX and Lingo)
- Mixed integer programing (MIP):

Decision variables: $X_{k, l}=\left\{\begin{array}{cl}1, & \text { component } k \text { is processed at position /in the first stage } \\ 0, & \text { otherwise }\end{array}\right.$
$Y_{j, p}= \begin{cases}1, & \text { component } j \text { is processed at position } p \text { in the second stage } \\ 0, & \text { otherwise }\end{cases}$ $T_{l}= \begin{cases}1, & \text { the components at position } l \text { and } l-1 \text { are the same in the first stage } \\ 0, & \text { otherwise }\end{cases}$

Problem definition

Pos $_{l}$ type of components at position l in the first stage
$F_{1, l} \quad$ finishing time of the component at position l in the first stage
$F_{2, p} \quad$ finishing time of the product at position p in the second stage
Avt $_{j} \quad$ available time of product j in the second stage
$\sum_{l=1}^{n} X_{k, l}=1, \quad k=1, \ldots, n$
$\sum_{k=1}^{n} X_{k, l}=1, \quad l=1, \ldots, n$
$\sum_{p=1}^{N} Y_{j, p}=1, \quad j=1, \ldots, N$
$\sum_{j=1}^{N} Y_{j, p}=1, \quad p=1, \ldots, N$
$\operatorname{Pos}_{l}=\sum_{k=1}^{n} k \times X_{k, l}, \quad l=1, \ldots, n$
$T_{l}=\min \left\{\left|\operatorname{Pos}_{l}-\operatorname{Pos}_{l-1}\right|, 1\right\}, \quad \forall l \geqslant 2$
$F_{1,1}-S-\sum_{k=1}^{n} t\left(C_{k}\right) \times X_{k, 1} \geqslant 0$
$F_{1, l}-F_{1, l-1}-S \times T_{l}-\sum_{k=1}^{n} t\left(C_{k}\right) \times X_{k, l} \geqslant 0, \quad \forall l \geqslant 2$
$\mathrm{Avt}_{j}=\max \{$ finishing time for each component in product j\}
$F_{2,1}-\sum_{j=1}^{N} t\left(A_{j}\right) \times Y_{j, 1} \geqslant \sum_{j=1}^{N} \operatorname{Avt}_{j} \times Y_{j, 1}$
$F_{2, p}-\sum_{j=1}^{N} t\left(A_{j}\right) \times Y_{j, p} \geqslant \max \left\{F_{2, p-1}, \sum_{j=1}^{N} \operatorname{Avt}_{j} \times Y_{j, p}\right\}, \forall p \geqslant 2$
M_{1} can process at most one component at a time
(6) Pos_{l} type of components at position / in the first stage
(7) The components at position l and $l-1$ are same in first stage

Determine the completion time for each component
(10) Available time of product j in the second stage

Determine the completion time for each product

Problem definition

- Mixed integer programing (MIP)(con't):
* Make sure model is linear:
$T_{l}=\min \left\{\left|\operatorname{Pos}_{l}-\operatorname{Pos}_{l-1}\right|, 1\right\}, \quad \forall l \geqslant 2$

\rightarrow| $T_{l} \leqslant 1, \quad \forall l \geqslant 2$ |
| :--- |
| $T_{l} \leqslant \operatorname{Pos}_{l}-\operatorname{Pos}_{l-1}+M \times y_{l}, \quad \forall l \geqslant 2$ |

$T_{l} \leqslant \operatorname{Pos}_{l-1}-\operatorname{Pos}_{l}+M \times\left(1-y_{l}\right), \quad \forall l \geqslant 2$
where
$y_{l}= \begin{cases}1 & \operatorname{Pos}_{l}-\operatorname{Pos}_{l-1} \geqslant 0 \\
0 & \operatorname{Pos}_{l}-\operatorname{Pos}_{l-1}<0\end{cases}$

Computational experiments

Computing on:

- 1700MHz Pentium 4 processor under windows 2000
- Coded in VC ++ 5.0

Data:

- Six p-types(next slide)
- Eleven combinations of m and n values: $(m ; n)=(2,10),(4,10),(6,10),(8,10),(10,10),(2,15),(4,15),(6,15)$, $(8,15),(2,20)$, and $(4,20)$.
- Each case for 50 random problems

job processing time range:

- Discrete uniform distribution on $\left[a_{i k}, b_{i k}\right]$

Computational experiments

Table 6
Weighted problems: mean and standard deviation of node count, computation time, and $\% \mathrm{UB}$, and $\%$ stopped as a function of n and m

n / m	Node count		Time (s)		\% UB		\% stopped
	Mean	s.d.	Mean	s.d.	Mean	s.d.	
10/2	230.9	306.4	0.002	0.005	12.2	5.5	None
10/6	325.0	355.6	0.010	0.012	5.8	3.1	None
10/10	344.9	444.9	0.022	0.025	3.8	2.0	None
15/2	31,995.9	89,140.9	0.471	1.133	15.3	5.5	None
15/4	56,871.7	138,923.4	1.984	4.685	11.4	3.9	None
15/6	58,601.9	13,007.3	2.976	6.227	9.1	3.1	None
15/8	63,134.0	143,223.0	4.684	9.989	7.3	2.7	None
20/2	1,789,465.4	1,560,441.7	41.153	35.445	15.5	5.9	27.33
20/4	2,123,175.0	1,459,539.9	113.150	75.914	13.4	4.1	36.33

- Weight w_{j} follow a discrete uniform distribution[1,10]
- With n and m averaged over all p-type values
- Weighted problems are harder to solve and have higher UB values than unweighted ones.

Conclusion

- M-machine permutation flow shop scheduling
- Total flow-time objective
- Unweight and weighted version
- Suggested
- A new machine-based lower bound
- Dominance test
- Future research
- The application of other solution techniques to the problem
- Extending B\&B algorithm to other objectives
- The develop of efficient heuristics
- Developing for big size problem
- Adv \& Disadv

THANK YOU

