# An efficient heuristic for a two-stage assembly scheduling problem with batch setup times to minimize makespan

Ching-Jong Liao , Cheng-Hsiung Lee , Hong-Chieh Lee(2015)





# Contents

- 1. Introduction
- 2. Literature review
- 3. Problem definition
- 4. Development of proposed heuristic
- 5. Development of a lower bound
- 6. Computational results
- 7. Conclusions and future research

# Introduction

- Problem review
  - Two-stage assembly scheduling
  - Problem originated form motor factory
  - Batch setup time: starting processing components & switching the item of component
  - Product: each product is assembled with one or more common components



Fig. 1. Production flow line of a motor factory.

# Introduction

- Example
  - $\checkmark$  A four-product and three-component type problem



Fig. 2. An example of a four-product and three-component type.

### Literature review

- *M*-machine flow shop scheduling
- Permutation flowshop problem
- Np-hard problem

### • Literature review

| Problem                         | Description                                                   | Authors                    |  |  |
|---------------------------------|---------------------------------------------------------------|----------------------------|--|--|
| Single-<br>machine<br>extension | B&B algorithms to solve a problem with precedence constraints | Sidney and Potts (1975)    |  |  |
|                                 | weighted flow-time problems                                   | Bansal [6] and Potts(1980) |  |  |
|                                 | included job classes and setup times in their model           | Mason and Anderson(1991)   |  |  |
| Two-machines<br>flowshop        | B&B algorithm for the two-machine case                        | Ignall and Schrage(1965)   |  |  |
|                                 | Low bound based on the Lagrangean relaxation method           | Van de Velde(1990)         |  |  |
| M-machines<br>flowshop          | makespan objective                                            | Potts(1980)                |  |  |
|                                 | total completion times( <i>compared</i> )                     | Ahmadi and Bagchi(1990)    |  |  |

- Problem
  - The two-stage assembly scheduling problem
- Objective
  - Minimum makespan
- Decision Variable
  - Sequencing
- Approach & Algorithms
  - Proposed heuristic

### Assumption

- All components are available at time zero
- At any time, machine can process at most one operation
- non-preemptive
- All setup times are identical
- unlimited buffer
- The processing constraint is non-permutation

### • Notations

- *N* number of products
- *n* number of components types
- *L* number of components for each product
- *M<sub>i</sub>* machine *i* , *i*=1,2
- *J<sub>j</sub>* product *j* , *j*=1,2,...,*N*
- *C<sub>k</sub>* component *k* , *k*=1,2,...,*n*
- $t(C_k)$  processing time of  $C_k$
- $A_i$  assembly operation of  $J_i$
- $t(A_j)$  operation time of  $A_j$
- *s* setup time
- *U* set of unscheduled products
- S set of scheduled products
- *B* set of unscheduled components
- *D* set of scheduled components
- $B_i$  set of unscheduled components in  $J_i$
- |B| number of components types in B
- $|B_j|$  number of components types in  $B_j$
- *T*(*B*) total processing time of *B*
- $T(B_j)$  total processing time of  $B_j$

Mixed integer programing (MIP):

An optimal way is Formulate the problem into a mathematical problem, solve problem by commercial optimization software(CPLEX and Lingo)

Mixed integer programing (MIP):

Decision variables:  $X_{k,l} = \begin{cases} 1, & \text{component } k \text{ is processed at position / in the first stage} \\ 0, & \text{otherwise} \end{cases}$ 

 $Y_{j,p} = \begin{cases} 1, & \text{component } j \text{ is processed at position } p \text{ in the second stage} \\ 0, & \text{otherwise} \end{cases}$ 

 $T_l = \begin{cases} 1, & \text{the components at position } l \text{ and } l-1 \text{ are the same in the first stage} \\ 0, & \text{otherwise} \end{cases}$ 

- Mixed integer programing (MIP)(con't): Minimize  $Z = C_{max} = F_{2,N}$ (1)subject to  $\sum_{l=1}^{n} X_{k,l} = 1, \ k = 1, \dots, n$ (2) $\sum_{k=1}^{n} X_{k,l} = 1, \ l = 1, \dots, n$ (3) $\sum_{n=1}^{N} Y_{j,p} = 1, \ j = 1, \dots, N$ (4) $\sum_{i=1}^{N} Y_{j,p} = 1, \ p = 1, \dots, N$ (5)  $\operatorname{Pos}_{l} = \sum_{i=1}^{n} k \times X_{k,l}, \quad l = 1, \dots, n$  $T_l = \min\{|Pos_l - Pos_{l-1}|, 1\}, \forall l \ge 2$  $F_{1,1}-s-\sum_{k=1}^{n}t(C_k)\times X_{k,1}\geq 0$ (8) $F_{1,l} - F_{1,l-1} - s \times T_l - \sum_{i=1}^n t(C_k) \times X_{k,l} \ge 0, \quad \forall l \ge 2$ (9)  $Avt_i = max \{ finishing time for each component \}$ in product j}  $F_{2,1} - \sum_{i=1}^{N} t(A_i) \times Y_{j,1} \ge \sum_{i=1}^{N} \operatorname{Avt}_j \times Y_{j,1}$ (11) $F_{2,p} - \sum_{i=1}^{N} t(A_j) \times Y_{j,p} \ge \max \left\{ F_{2,p-1}, \sum_{i=1}^{N} \operatorname{Avt}_j \times Y_{j,p} \right\}, \quad \forall p \ge 2$ (12)
- type of components at position *l* in the first stage Pos finishing time of the component at position l in the first  $F_{11}$ stage finishing time of the product at position *p* in the second  $F_{2,p}$ stage available time of product *j* in the second stage Avt  $M_1$  can process at most one component at a time  $M_2$  can process at most one operation at a time (6)  $Pos_1$  type of components at position / in the first stage The components at position l and l-1 are same in first stage Determine the completion time for each component
  - (10) Available time of product j in the second stage

Determine the completion time for each product

Mixed integer programing (MIP)(con't):

#### Make sure model is linear:



# **Computational experiments**

### Computing on:

- 1700MHz Pentium 4 processor under windows 2000
- Coded in VC ++ 5.0

### Data:

- Six *p*-types(next slide)
- Eleven combinations of *m* and *n* values: (m; n)=(2,10), (4,10), (6,10), (8,10), (10,10), (2,15), (4,15), (6,15), (8,15), (2,20), and (4,20).
- Each case for 50 random problems

### job processing time range:

• Discrete uniform distribution on  $[a_{ik}, b_{ik}]$ 

### **Computational experiments**

Table 6

Weighted problems: mean and standard deviation of node count, computation time, and % UB, and % stopped as a function of *n* and *m* 

| n/m   | Node count  |             | Time (s) |        | % UB |      | % stopped |
|-------|-------------|-------------|----------|--------|------|------|-----------|
|       | Mean        | s.d.        | Mean     | s.d.   | Mean | s.d. |           |
| 10/2  | 230.9       | 306.4       | 0.002    | 0.005  | 12.2 | 5.5  | None      |
| 10/6  | 325.0       | 355.6       | 0.010    | 0.012  | 5.8  | 3.1  | None      |
| 10/10 | 344.9       | 444.9       | 0.022    | 0.025  | 3.8  | 2.0  | None      |
| 15/2  | 31,995.9    | 89,140.9    | 0.471    | 1.133  | 15.3 | 5.5  | None      |
| 15/4  | 56,871.7    | 138,923.4   | 1.984    | 4.685  | 11.4 | 3.9  | None      |
| 15/6  | 58,601.9    | 13,007.3    | 2.976    | 6.227  | 9.1  | 3.1  | None      |
| 15/8  | 63,134.0    | 143,223.0   | 4.684    | 9.989  | 7.3  | 2.7  | None      |
| 20/2  | 1,789,465.4 | 1,560,441.7 | 41.153   | 35.445 | 15.5 | 5.9  | 27.33     |
| 20/4  | 2,123,175.0 | 1,459,539.9 | 113.150  | 75.914 | 13.4 | 4.1  | 36.33     |

- Weight w<sub>i</sub> follow a discrete uniform distribution[1,10]
- With *n* and *m* averaged over all *p*-type values
- Weighted problems are harder to solve and have higher UB values than unweighted ones.

# Conclusion

### • M-machine permutation flow shop scheduling

- Total flow-time objective
- Unweight and weighted version

### Suggested

- A new machine-based lower bound
- Dominance test

### Future research

- The application of other solution techniques to the problem
- Extending B&B algorithm to other objectives
- The develop of efficient heuristics
- Developing for big size problem

### Adv & Disadv

Production and Logistics Information

# **THANK YOU**