
Location-routing: Issues, models and methods

European Journal of Operational Research, 2007, 177, 649-672.

Ji-Su Kim

Production and Logistics information Laboratory Department of Industrial Engineering Hanyang University August, 21, 2012

Contents

Introduction

What is location-routing problem?

Definition

- Set of problems
- Approach to modelling and solving locational problems
 - Inot a single well defined problem
 - e.g., Weber problem or the travelling salesman problem

Hierarchical viewpoint

- To solve a facility location problem (the "master problem")
- Simultaneously need to solve a vehicle routing problem (the "subproblem")
 - Location, routing, location-routing

Set of problems

- Practical viewpoint: distribution management
- Mathematical viewpoint: combinatorial optimisation problem
- NP-hard problem: it encompasses two NP-hard problems

Introduction

Variety of location-routing problem versions

Problem type	Paper	Section	
Stochastic LRP	Laporte et al. (1989)	5.2	
Dynamic LRP	Laporte and Dejax (1989)	5.3	
Hamiltonian <i>p</i> -median	Branco and Coelho (1990)	4.2	
Road-train routing	Semet (1995)	6.4	
Vehicle routing-allocation (VRAP)	Beasley and Nascimento (1996)	6.3	
Many-to-many LRP	Nagy and Salhi (1998)	6.2	
Eulerian location	Ghiani and Laporte (1999)	3	
LRP with mixed fleet	Wu et al. (2002)	4.3	
Location-routing-inventory	Liu and Lee (2003)	5.2	
Plant cycle location	Labbé et al. (2004)	3	
Many-to-many LRP	Wasner and Zäpfel (2004)	6.2	
Multi-level location-routing-inventory	Ambrosino and Scutellà (2005)	6.4	
Deterministic LRP	Albareda-Sambola et al. (2005)	4.4	
VRAP (median cycle problem)	Labbé et al. (2005)	6.3	
LRP with non-linear costs	Melechovský et al. (2005)	4.4	
Planar LRP (single-depot)	Schwardt and Dethloff (2005)	4.2	
Restricted VRAP	Gunnarsson et al. (in press)	6.3	
Planar LRP (multi-depot)	Salhi and Nagy (in review)	4.3	

ILP formulations for various LRP problems

Introduction

* Applications of location-routing

A summary of LRP applications

Paper	Section	Application area	Country/region	Facilities	Customers
Watson-Gandy and Dohrn (1973)	4.4	Food and drink distribution	United Kingdom	40	300
Bednar and Strohmeier (1979)	4.2	Consumer goods distribution	Austria	3	50
Or and Pierskalla (1979)	4.4	Blood bank location	United States	3	117
Jacobsen and Madsen (1980)	6.4	Newspaper distribution	Denmark	42	4510
Nambiar et al. (1981)	4.1/4.4	Rubber plant location	Malaysia	15	300
Perl and Daskin (1984, 1985)	4.3	Goods distribution	United States	4	318
Labbé and Laporte (1986)	6.3	Postbox location	Belgium	Not given	Not given
Nambiar et al. (1989)	5.3	Rubber plant location	Malaysia	10	47
Semet and Taillard (1993)	6.4	Grocery distribution	Switzerland	9	90
Kulcar (1996)	6.1	Waste collection	Belgium	13	260
Murty and Djang (1999)	6.3	Military equipment location	United States	29	331
Bruns et al. (2000)	6.2	Parcel delivery	Switzerland	200	3200
Chan et al. (2001)	5.3	Medical evacuation	United States	9	52
Lin et al. (2002)	4.4	Bill delivery	Hong Kong	4	27
Lee et al. (2003)	3	Optical network design	Korea	50	50
Wasner and Zäpfel (2004)	6.2	Parcel delivery	Austria	10	2042
Billionnet et al. (2005)	3	Telecom network design	France	6	70
Gunnarsson et al. (in press)	6.3	Shipping industry	Europe	24	300
Lischak and Triesch (in review)	6.2	Parcel delivery	Poland	22	750

Classification

Classification criteria

- Problem structure
- Pertaining to the location of facilities
- Patern of vehicle routes or to the entirety of the problem
 - ←---- Four key aspects of location-routing problem
- ✓ Hierarchical structure

Facilities servicing a number of customers, these are connected to their depot by means of vehicle tours.

-----> Single or multi level, etc.

✓ Type of input data

This may be deterministic or stochastic.

All stochastic papers consider customer demand as the only stochastic variable

* Classification

Classification criteria (continued)

✓ Planning period

This may be single-period or multi-period.

Single or multiple periods are known respectively as static or dynamic

✓ Solution method

This may be exact or heuristic.

- More papers using heuristic methods, but exact methods are often very successful for special cases of the LRP
- ✓ Objective function

Usual objective for location-routing problems is that of overall cost minimization.

----- Costs can be divided into depot costs and vehicle costs

Classification

Classification criteria (continued)

✓ Solution space

This can be discrete, network or continuous.

-----> Most of the LRP literature deals with discrete location

✓ Number of depots

This may be single or multiple.

-----> Most papers on the LRP deal with multiple depots

✓ Number and types of vehicles

Most location-routing problems, the number of vehicles is not fixed in advance and a homogeneous fleet is assumed.

Homogeneous or heterogeneous, fixed number of vehicle etc.

Classification

Classification criteria (continued)

✓ Route structure

To start out from a depot, traverse through a number of customer nodes, delivering goods at each customer and finally return to the same depot.

e.g., arc routing, multiple trips, delivery and pickup, etc (exceptions)

Various LRP problems with classification criteria

Eulerian location problem

- Instead of consisting of customer nodes, require the vehicles to traverse given edges.
- Vehicles are required to traverse given edges (rather than nodes).
- Depots are located based on the partition network and an attractiveness measure relating to the number and weight of the arcs incident to potential depot nodes.
 - Underlying routing problem is the arc routing problem

e.g., Levy and Bodin (1989) – clustering based methods in heuristic solution method for deterministic problems

Plant-cycle location problem

- Which plants to open, the assignment of customers to plants, and the cycles containing each open plant and its customers
- Minimizing the total cost
 - Related to the well-known Capacitated Facility Location Problem

e.g., Billionnet et al. (2005) – exact method for deterministic problems

Various LRP problems with classification criteria

Hamiltonian p-median problem

- Where exactly p facilities must be located and each facility has exactly one route Minimizing the total cost.
- A special case of the LRP
 - Partitioning the customer set into p Hamiltonian circuits
 - e.g., Branco and Coelho (1990) clustering based methods in heuristic solution method for deterministic problems

Planar LRP (single or multi-depot)

- Location of facilities in the plane and the determine the vehicle routes originating from the chosen facility to serve all customers
- Minimum total transportation cost
 - Concerned with locating the facilities in the continuous space
 - e.g., Schwardt and Dethloff (2005) clustering based methods in heuristic solution method for deterministic problems

Various LRP problems with classification criteria

Many-to-many location-routing problem

- Several customers wish to send goods to others.
- A network of hubs is to be located.
- Each customer sends a different commodity to every other customer.
 - •---- Generalized version of hub location problem (parcel delivery, delivery and pickup)

e.g., Nagy and Salhi (1998) – Problems with non-standard hierarchical structure

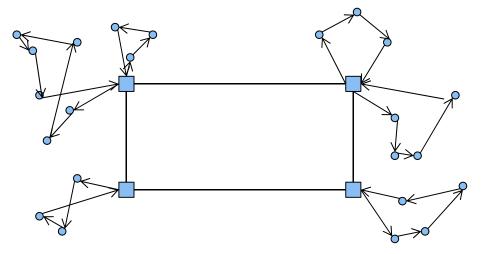


Figure 1. An illustration of the many-to-many location-routing problem Production and Logistics Information Laboratory

Various LRP problems with classification criteria

Vehicle routing-allocation problems

- VRAP not all customers need be visited by the vehicles.
- However customers not visited either have to be allocated to some customer on one of the vehicle tours or left isolated.
 - Median cycle problem (bus lines in rural or urban areas)

e.g., Beasley and Nascimento (1996) – Problems with nonstandard hierarchical structure

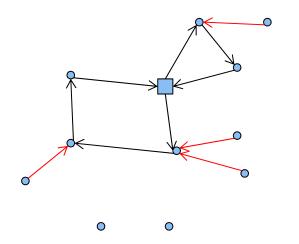
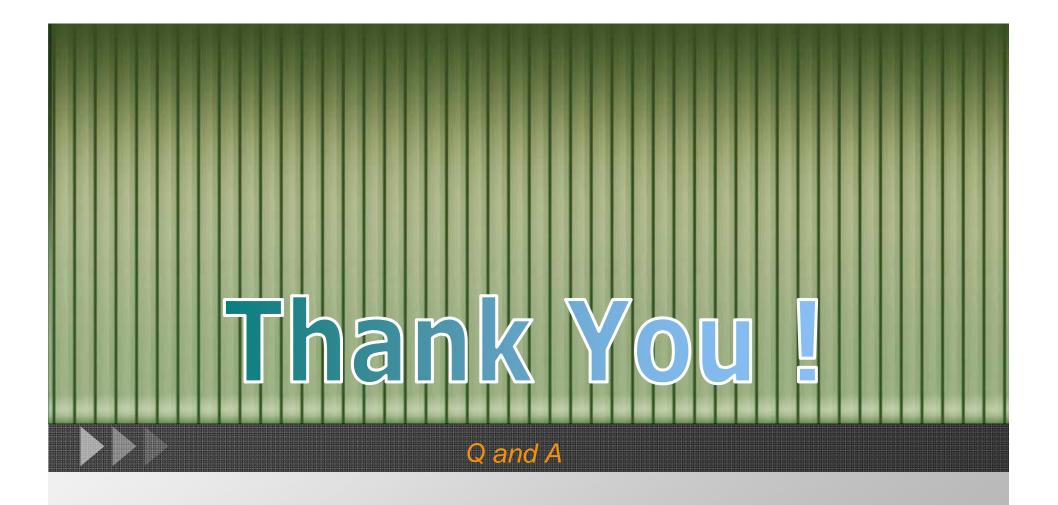


Figure 2. An illustration of the vehicle routing-allocation problem Production and Logistics Information Laboratory

Various LRP problems with classification criteria

Multi-level location-routing problems


- Routing occurs both at hub and customer level.
- Two-level location-routing problem.
- Newspapers are delivered from the factory to transfer points and from these to the customers.
 - Road-train routing problem

e.g., Jacobsen and Madsen (1980) and Madsen(1983) – Problems with non-standard hierarchical structure

Conclusion

Summary

- Survey of location-routing
- Propose a classification scheme
- A number of problem variants
- Some suggestions for future research

