Multi-period reverse logistics network design

European journal of Operational Research, 2012, 220, 67-78.

Ji-Su Kim

Production and Logistics information Laboratory Department of Industrial Engineering Hanyang University July 04, 2013

Contents

Introduction

Reverse logistics network

Reverse logistics network design problem [1]

• Reverse logistics process involved collection, inspection, recycling, refurbishing, and remanufacturing of used or returned products.

Process of planning, implementing and controlling of backward flows

Problem characteristics

- A multi-period and multi-product setting.
- Modular capacities and capacity expansion of the facilities.
- Reverse bill of materials.
- Finite demands in the secondary market
- Minimum throughput at the facilities and variable operational cost.
- A profit-oriented objective function.

Introduction

Reverse logistics network

Reverse logistics network design problem [2]

• Consider a multi-period and product reverse logistics network that involved inspection/disassembly and remanufacturing facilities.

Figure 1. A reverse logistics network.

Introduction

***** Literature review

Refer to configurational decisions

|--|

Article	Location decisions for reverse activities			Multiple	Reverse	Dynamic	Dynamic	Capacities	Time	Minimum	Profit	Secondary
	Inspection disassembly	Recycling	Remanufacturing refurbishing	products	BOM	returns	location		adjustment capacities	throughput	oriented	market
Jayaraman et al. (1999)			\checkmark	\checkmark				С				
Krikke et al. (1999)			\checkmark									
Louwers et al. (1999)		\checkmark		\checkmark								\checkmark
Fleischmann et al. (2001)	\checkmark		\checkmark									
Schultmann et al. (2003)	\checkmark				\checkmark			С				
Krikke et al. (2003)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
Realff et al. (2004)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		С			\checkmark	\checkmark
Listeş and Dekker (2005)	\checkmark	\checkmark		\checkmark				С			\checkmark	\checkmark
Lieckens and Vandaele (2007)		\checkmark	\checkmark					ML			\checkmark	\checkmark
Figueiredo and Mayerle (2008)	\checkmark											
Pati et al. (2008) Salema et al. (2009)	$\sqrt[n]{\sqrt{1}}$	\checkmark	\checkmark	$\sqrt[]{}$		\checkmark		C C		\checkmark	\checkmark	
Srivastava (2008) Fonseca et al.	\checkmark	\checkmark	\checkmark	$\sqrt[]{}$	\checkmark			C M	\checkmark		\checkmark	
(2010) Gomes et al. (2011)	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		С				
The new model	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	М	\checkmark	\checkmark	\checkmark	\checkmark

'C': Capacitated

'M': Modular capacities 'ML': Multi-level capacities

- Multi-product reverse logistics network design problem (MPRLND)
 - **Objective function**
 - Maximizes the profit.

Revenue

Sum of the revenues from the recycling centers, from the external remanufacturing plants, from the secondary market, and then subtract the costs.

Costs

The costs are the fixed costs of establishing facilities and capacity modules, operational costs, transportation costs, inventory holding costs, and component purchasing costs.

Multi-product reverse logistics network design problem (MPRLND)

Decision variables

- Location of the inspection centers and remanufacturing facilities.
- Capacity of the new facilities.
- Capacity expansion of the existing facilities.
- Flow routing through the network.
- Amount of inventory to hold and the amount of components to purchase from the suppliers in the remanufacturing plants
 - Location, capacities, flow routing, inventory holding and components purchase.

Carbon footprint based reverse logistics network design problem

Main constraints

- Flow balance constraints
 - Collection center, inspection center, remanufacturing center, external remanufacturing center and secondary market
- Capacity (capacity expansion) constraints
 - Image: New (existing) facilities
- Minimum throughput constraints
 - Inspection center or remanufacturing center

Assumption

• All the components are assumed to be suitable for remanufacturing.

Mathematical formulation **

Notation [1]

Sets		General J	oaramet
P C	set of products (disposals) set of components	S_{ip}^t	supply $i \in I^G$ in
C_p T	set of components for product $p \in P(C_p \subset C)$ set of periods in the planning horizon	D_p^t	demaniod $t \in$
I ^G	set of generation points or collection centers	α_{pc}	amour
I ^I I ^R	set of potential locations for inspection centers set of potential locations for remanufacturing plants	γI_p	unit c inspec
R ^G R ^I	recycling node for collection centers recycling node for inspection centers	γR_p	unit c reman
R ^R ER	recycling node for remanufacturing plants external remanufacturing plants	γc	unit in $C \in C$
SM Q ^I	secondary market set of capacities of the modules available for inspection	MI_i^t	minim
Q ^R	centers set of capacities of the modules available for remanufac-	MR_i^t	minim
	turing plants	KER_i^t	capaciti $i \in ER$
Revenues PRG ^t p	unit revenue from product $p \in P$ recycled from a collection	KI _q KP _a	capaci produ
PRI_c^t	unit revenue from component $c \in C$ recycled from an inspection center in period $t \in T$	KH _q KIN _a	inbouı invent
PRR_c^t	unit revenue from component $c \in C$ recycled from a remanufacturing plant in period $t \in T$	4	
PER ^t _{ip}	unit revenue from product $p \in P$ sold to an external reman- ufacturing plant at $i \in ER$ in period $t \in T$		

 PSM_n^t unit revenue from product $p \in P$ sold to the secondary market in period $t \in T$

ters

- of product or disposal $p \in P$ from collection center n period $t \in T$
- nd of the secondary market for product $p \in P$ in per-T
- nt of component $c \in C_p$ in one unit of product $p \in P$
- capacity consumption factor for product $p \in P$ for tion
- capacity consumption factor for product $p \in P$ for ufacturing
- ventory capacity consumption factor for component
- um throughput required for an inspection center loat $i \in I^{I}$ in period $t \in T$
- num throughput required for a remanufacturing located at $i \in I^R$ in period $t \in T$
- ty of the external remanufacturing plant located at in period $t \in T$
- ity of inspection of a module of type $q \in Q^I$
- iction capacity of a module of type $q \in Q^R$
- nd handling capacity of a module of type $q \in Q^R$
- tory holding capacity of a module of type $q \in Q^R$

Mathematical formulation **

Notation [2]

Costs

- FI_i^t set-up cost for installing an inspection center at $i \in I^{l}$ in the beginning of period $t \in T$
- FR_i^t set-up cost for installing a remanufacturing plant at $i \in I^R$ in the beginning of period $t \in T$
- FKI^tia set-up cost for a module of type $q \in Q^{I}$ to be added to an inspection center located at $i \in I^{I}$ in period $t \in T$
- FKR^tia set-up cost for a module of type $q \in Q^R$ to be added to a remanufacturing plant located at $i \in I^R$ in period $t \in T$
- OI_{ip}^t cost for operating one unit of product $p \in P$ in an inspection center $i \in I^{I}$ in period $t \in T$
- OR_{ip}^{t} cost for producing one unit of product $p \in P$ in a remanufacturing plant $i \in I^R$ in period $t \in T$
- T_{ijp}^t unit transportation cost of product $p \in P$ (component $p \in C$) from $i \in I^{\overline{G}}$ to $j \in I^{\overline{I}}$, or $i \in I^{\overline{I}}$ to $j \in I^{\overline{R}}$ in period $t \in T$
- IC_{ic}^{t} unit inventory holding cost for component $c \in C$ in a remenufacturing plant $i \in I^R$ in period $t \in T$
- BC_{ic}^{t} cost of purchasing one unit of component $c \in C$ for remanufacturing plant $i \in I^R$ in period $t \in T$

Decision variables

- amount of product $p \in P$ (component $p \in C$) shipped from x_{iip}^t site *i* to site *j*, $(i,j) \in A$, in period $t \in T$
- I_{ic}^t amount of component $c \in C$ hold in inventory in remanufacturing plant $i \in I^R$ in the end of period $t \in T$
- b_{ic}^t amount of component $c \in C$ purchased for remanufacturing plant $i \in I^R$ in the beginning of period $t \in T$

1 If an inspection center $i \in I^{I}$ is operating in period $t \in T$, $y_i^t =$ 0 otherwise,

 $\int 1 \quad \text{If a remanufacturing plant } i \in I^{\mathbb{R}} \text{ is operating in period } t \in T,$ 0 otherwise.

1 If a module of type $q \in Q^I$ is added to an inspection center $u_{ia}^t = \cdot$

 $i \in I^{I}$, in the beginning of period $t \in T$,

0 otherwise.

1 If a module of type $q \in Q^R$ is added to a remanufacturing center

 $v_{ia}^t =$ $i \in I^R$, in the beginning of period $t \in T$,

0 otherwise

* Mathematical formulation of the model

MPRLND [1]

$$\begin{aligned} \text{Max} \quad \sum_{t \in T} \left[\sum_{p \in P} \sum_{i \in l^{c}} PRG_{p}^{t} x_{ik^{c}p}^{t} + \sum_{c \in C} \sum_{i \in l^{c}} PRI_{c}^{t} x_{ik^{c}c}^{t} + \sum_{c \in C} \sum_{i \in l^{R}} PRR_{c}^{t} x_{ik^{R}c}^{t} & \text{s.t.} & S_{ip}^{t} = x_{ik^{c}p}^{t} + \sum_{j \in l^{d}} x_{ijp}^{t}, \quad i \in l^{C}, \ p \in P, \ t \in T, \end{aligned} \right] \\ & + \sum_{p \in P} \sum_{i \in l^{f}} \sum_{j \in R} PER_{jp}^{t} x_{ijp}^{t} + \sum_{p \in P} \sum_{i \in l^{R}} PSM_{p}^{t} x_{iSMp}^{t} \right] \\ & - \sum_{t \in T} \left[\sum_{i \in l^{f}} FI_{i}^{t} (y_{i}^{t} - y_{i}^{t-1}) + \sum_{i \in l^{R}} FR_{i}^{t} (z_{i}^{t} - z_{i}^{t-1}) \right] \\ & - \sum_{t \in T} \sum_{i \in l^{f}} \sum_{q \in Q^{c}} FKI_{iq}^{t} u_{iq}^{t} + \sum_{i \in l^{R}} \sum_{q \in Q} FKR_{iq}^{t} v_{iq}^{t} \right] \\ & - \sum_{t \in T} \sum_{p \in P} \left[\sum_{i \in l^{f}} \sum_{j \in l^{f}} OI_{jp}^{t} x_{ip}^{t} + \sum_{c \in C} \sum_{i \in l^{f}} \sum_{j \in l^{R}} T_{ip}^{t} x_{is}^{t} \right] \\ & - \sum_{t \in T} \sum_{c \in C} \sum_{i \in l^{R}} FI_{i}^{t} v_{iq}^{t} + \sum_{c \in C} \sum_{i \in l^{f}} \sum_{j \in l^{R}} T_{ip}^{t} x_{ijc}^{t} \right] \\ & - \sum_{t \in T} \sum_{c \in C} \sum_{i \in l^{R}} PER_{i}^{c} v_{ip}^{t} x_{ijc}^{t} + \sum_{c \in C} \sum_{i \in l^{f}} \sum_{j \in l^{R}} T_{ip}^{t} x_{ijc}^{t} x_{ijc}^{t} \right] \\ & - \sum_{t \in T} \sum_{c \in C} \sum_{i \in l^{R}} PER_{i}^{c} v_{ip}^{t} x_{ijc}^{t} + \sum_{i \in l^{R}} \sum_{q \in Q} FKR_{iq}^{t} v_{iq}^{t} \right] \\ & - \sum_{t \in T} \sum_{c \in C} \sum_{i \in l^{R}} PER_{i}^{c} v_{ip}^{t} x_{ijc}^{t} x_{ijc}^{t} x_{ijc}^{t} \right] \\ & - \sum_{t \in T} \sum_{c \in C} \sum_{i \in l^{R}} PER_{i}^{c} v_{ip}^{t} x_{ijc}^{t} x_{ijc}^{$$

* Mathematical formulation of the model

MPRLND [2]

$$\sum_{i \in I^{t}} \sum_{p \in P} x_{ijp}^{t} \leqslant KER_{j}^{t}, \quad j \in ER, \ t \in T,$$
(6)

$$\sum_{j \in I^{\mathcal{G}}} \sum_{p \in P} \gamma I_p X_{jip}^t \leqslant \sum_{\tau=1}^t \sum_{q \in Q^{\mathcal{I}}} K I_q u_{iq}^\tau, \quad i \in I^{\mathcal{I}}, \ t \in T,$$

$$\tag{7}$$

$$\sum_{p \in P} \gamma R_p x_{iSMp}^t \leqslant \sum_{\tau=1}^t \sum_{q \in Q^R} K P_q v_{iq}^{\tau}, \quad i \in I^R, \ t \in T,$$
(8)

$$\sum_{j \in l'} \sum_{c \in \mathcal{C}} x_{jic}^t \leqslant \sum_{\tau=1}^t \sum_{q \in \mathcal{Q}^R} K H_q v_{iq}^\tau, \quad i \in I^R, \ t \in T,$$

$$\sum_{c\in C} \gamma_c I_{ic}^t \leqslant \sum_{\tau=1}^t \sum_{q\in Q^R} KIN_q v_{iq}^{\tau}, \quad i \in I^R, \ t \in T,$$

$$(10)$$

Capacity constraints

 $\begin{aligned} x_{ijp}^{t} &\geq 0, \quad (i,j) \in A, \ p \in P, C, \ t \in T, \\ l_{ic}^{t} &\geq 0, \quad i \in l^{R}, \ c \in C, \ t \in T, \\ b_{ic}^{t} &\geq 0, \quad i \in l^{R}, \ c \in C, \ t \in T, \\ y_{i}^{t} \in \{0,1\}, \quad i \in l^{I}, \ t \in T, \\ u_{iq}^{t} \in \{0,1\}, \quad i \in l^{R}, \ t \in T, \\ u_{iq}^{t} \in \{0,1\}, \quad i \in l^{R}, \ q \in Q^{I}, \ t \in T. \end{aligned}$ (17)

 $y_i^t \leq y_i^{t+1}, \quad i \in I^l, \ t \in T \setminus \{|T|\},\$

 $z_i^t \leqslant z_i^{t+1}, \quad i \in I^R, \ t \in T \setminus \{|T|\},$

Production and Logistics Information Laboratory

(9)

(15)

(16)

A case study

Experiment design with results

Case data

A real life problem in Germany in the context of reverse logistics network design for washing machines and tumble dryers.

40 collection centers, 5-years planning horizon, etc.

 Solution method CPLEX 11.2.

A case study

Experiment design with results

Figure 3. Capacity installment decisions in the solution.

Conclusion

Summary

- Proposed a mathematical programming framework for multi-period reverse logistics network design problems.
- The proposed model accommodates several features of practical relevance.
- There can be gains in the profit by using a multi-period model compared to using a static one.
- The study also gave some essential insights such as inspection centers and remanufacturing plants can be co-located due to potential savings in the transportation costs between facilities.

